Magnetism in iridate heterostructures leveraged by structural distortions
Derek Meyers, Yue Cao, Gilberto Fabbris, Neil J Robinson, Lin Hao, Clayton Frederick, Nathan Traynor, Junyi Yang, Jiaqi Lin, MH Upton, D. Casa, Jong-Woo Kim, T. Gog, E. Karapetrova, Yongseong Choi, D. Haskel, P. J. Ryan, Lukas Horak, X. Liu, Jian Liu, and M. P. M. Dean
Scientific reports 9, 4263 (2019)
Fundamental control of magnetic coupling through heterostructure morphology is a prerequisite for rational engineering of magnetic ground states. We report the tuning of magnetic interactions in superlattices composed of single and bilayers of SrIrO3 inter-spaced with SrTiO3 in analogy to the Ruddlesden-Popper series iridates. Magnetic scattering shows predominately c-axis antiferromagnetic orientation of the magnetic moments for the bilayer, as in Sr3Ir2O7. However, the magnetic excitation gap, measured by resonant inelastic x-ray scattering, is quite different between the two structures, evidencing a significant change in the stability of the competing magnetic phases. In contrast, the single layer iridate hosts a more bulk-like gap. We find these changes are driven by bending of the c-axis Ir-O-Ir bond, which is much weaker in the single layer, and subsequent local environment changes, evidenced through x-ray diffraction and magnetic excitation modeling. Our findings demonstrate how large changes in the magnetic interactions can be tailored and probed in spin-orbit coupled heterostructures by engineering subtle structural modulations.