[Supplementary Material] Ferromagnetic Exchange Anisotropy from
Antiferromagnetic Superexchange in the Mixed $3 d-5 d$ Transition-Metal Compound $\mathrm{Sr}_{3} \mathrm{CuIrO}_{6}$

Wei-Guo Yin, ${ }^{1, *}$ X. Liu,,$^{2,1}$ A. M. Tsvelik, ${ }^{1}$ M. P. M. Dean, ${ }^{1}$ M. H. Upton, ${ }^{3}$<br>Jungho Kim, ${ }^{3}$ D. Casa, ${ }^{3}$ A. Said, ${ }^{3}$ T. Gog, ${ }^{3}$ T. F. Qi, ${ }^{4,5}$ G. Cao,,${ }^{4,5}$ and J. P. Hill ${ }^{1}$<br>${ }^{1}$ Condensed Matter Physics and Materials Science Department,<br>Brookhaven National Laboratory, Upton, New York 11973, USA<br>${ }^{2}$ Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China<br>${ }^{3}$ Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA<br>${ }^{4}$ Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506, USA<br>${ }^{5}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA<br>(Dated: April 12, 2013)

I. Large direct exchange between the $\operatorname{Ir} 5 d_{x y}$ and $\mathrm{Cu} 3 d_{x^{2}-y^{2}}$ orbitals
II. In the absence of $\mathrm{IrO}_{6}$ octahedral distortion
a. The zeroth order
b. The second-order perturbation
III. The effects of $\mathrm{IrO}_{6}$ octahedral distortion
IV. Spin-wave spectrum
V. How to fit theory with experiment
VI. Multi-magnon bound states
$\mathrm{Sr}_{3} \mathrm{CuIrO}_{6}$ has one $x^{2}-y^{2}$ hole on a Cu site and one $t_{2 g}$ hole on a Ir site. Therefore, we present our work in the hole language for convenience.

## I. LARGE DIRECT EXCHANGE BETWEEN THE IR $5 d_{x y}$ AND CU $3 d_{x^{2}-y^{2}}$ ORBITALS

A portion of a $\mathrm{Cu}-\mathrm{Ir}$ chain of $\mathrm{Sr}_{3} \mathrm{CuIrO}_{6}$ is shown below in Fig. 1(a). The only magnetic orbital $\phi_{\mathrm{Cu}}$ centered on a $\mathrm{Cu}^{2+}$ ion is of $x^{2}-y^{2}$ symmetry and is antisymmetric with regard to the $\mathrm{Cu}-\mathrm{Ir}$ mirror plane [in Fig. 1(b) this plane is perpendicular to the paper]. The $\operatorname{Ir} 5 d_{x y}$ orbital, $\phi_{\mathrm{Ir}, x y}$, is symmetric with regard to the $\mathrm{Cu}-\mathrm{Ir}$ mirror plane [Fig. 1(c)], even in the presence of the octahedral tilting and distortion. Thus, $\phi_{\mathrm{Ir}, x y}$ is always orthogonal to $\phi_{\mathrm{Cu}}$. As a result, electron hopping between these two orbitals is prohibited and so is the superexchange process. Thus, the leading magnetic interaction between them is the direct exchange interaction, $J_{\mathrm{F}}$, which is ferromagnetic. From the measured magnon bandwidth, we conclude that $J_{\mathrm{F}}$ is of order of dozens of meV. This is surprising, since direct exchange in TMCs is usually very small. The unusually large $J_{\mathrm{F}}$ comes from the two-electron exchange integral

$$
J_{F} \sim \int \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

where $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ are the positions of the two electrons, and $\rho(\mathbf{r})=\phi_{\mathrm{Cu}}(\mathbf{r}) \phi_{\mathrm{Ir}, x y}(\mathbf{r})$ the overlap density. As illustrated in Fig. 1(d), $\rho(\mathbf{r})$ has two strongly positive (negative) lobes around the O 2 (O5) oxygen atom that bridges the Cu and Ir sites. This is because the tails of $\phi_{\mathrm{Ir}, x y}$ and $\phi_{\mathrm{Cu}}$ share the same $\mathrm{O} 2 p_{y}$ and $\mathrm{O} 5 p_{x}$ orbital characters, and thus well overlap around each of O2 and O5 but with opposite sign. The denominator $\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ in the above equation means that the contribution to $J_{\mathrm{F}}$ when $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ are simultaneously near one of O 2 and O 5 is much larger than that when they are separately around O 2 and O 5 . Then, since $\rho(\mathbf{r})$ is to be squared in the above equation, the contributions from the two strong lobes of $\rho(\mathbf{r})$ become of the same sign, yielding a large $J_{\mathrm{F}}$. (Meanwhile the electron hopping is zero because of the phase cancelation.)


FIG. 1. (a) $\mathrm{Cu}-\mathrm{Ir}$ chain of $\mathrm{Sr}_{3} \mathrm{CuIrO}_{6}$ where $\mathrm{Cu}^{2+}$ and $\mathrm{Ir}^{4+}$ are coordinated by an oxygen plaquette and octahedron, respectively. The $\mathrm{IrO}_{6}$ octahedral tilting is denoted by $\alpha \simeq 150^{\circ}$ and the octahedral distortion by $\beta \simeq 82^{\circ}$. (b) and (c) Schematic drawings of $\mathrm{Cu} 3 d_{x^{2}-y^{2}}$ and Ir $5 d_{x y}$ Wannier orbitals, $\phi_{\mathrm{Cu}}$ and $\phi_{\mathrm{Ir}, x y}$, respectively, for the ideal case of $\alpha=180^{\circ}$ and $\beta=90^{\circ}$. Note the considerable tails on the oxygen sites due to the metal-oxygen hybridization. (d) Schematic map of the overlap density, $\rho=\phi_{\mathrm{Cu}} \phi_{\mathrm{Ir}, x y}$. Red (blue) represents positive (negative) values.

## II. IN THE ABSENCE OF $\mathrm{IrO}_{6}$ OCTAHEDRAL DISTORTION

We consider a one-dimensional (1D) model with orbital-dependent Heisenberg exchange interactions $\left(J_{\mathrm{F}}, J_{\mathrm{AF}}\right)$ between the Cu and Ir sites and with large spin-orbit interaction $\lambda$ on the Ir sites:

$$
\begin{equation*}
H=\sum_{\langle\mathbf{m}, \mathbf{n}\rangle}\left\{-J_{\mathrm{F}} \vec{S}_{\mathbf{m}, x^{2}-y^{2}} \cdot \vec{S}_{\mathbf{n}, x y}+J_{\mathrm{AF}} \vec{S}_{\mathbf{m}, x^{2}-y^{2}} \cdot\left(\vec{S}_{\mathbf{n}, y z}+\vec{S}_{\mathbf{n}, z x}\right)\right\}+\lambda \sum_{\mathbf{n}} \vec{L}_{\mathbf{n}} \cdot \vec{S}_{\mathbf{n}} \tag{1}
\end{equation*}
$$

where $\mathbf{m}$ denotes a Cu site, $\mathbf{n}$ an $\operatorname{Ir}$ site, and $\langle\mathbf{m}, \mathbf{n}\rangle$ means nearest neighbors. $\vec{S}_{\mathbf{n}, \gamma}=\sum_{\mu \nu} d_{\mathbf{n}, \gamma, \mu}^{\dagger} \vec{\sigma}_{\mu \nu} d_{\mathbf{n}, \gamma, \nu} / 2$ where $\vec{\sigma}_{\mu \nu}$ is the Pauli matrix and $d_{\mathbf{n}, \gamma, \mu}$ is the annihilation operator of an electron with spin $\mu=\uparrow, \downarrow$ and orbital $\gamma=x y, x z, y z$ on the $\operatorname{Ir}$ site $\mathbf{n} .-J_{\mathrm{F}}<0$ is the oxygen-bridged ferromagnetic (FM) exchange coupling due to the orthogonality of the $\mathrm{Cu} x^{2}-y^{2}$ orbital to the $\operatorname{Ir} x y$ orbital. $J_{\mathrm{AF}}>0$ is oxygen-bridged antiferromagnetic (AF) exchange coupling due to the $\mathrm{IrO}_{6}$-octahedral-tilting-induced nonorthogonality of the $\mathrm{Cu} x^{2}-y^{2}$ orbital to the $\operatorname{Ir} y z$ and $z x$ orbitals.

The spin-orbit interaction on the $t_{2 g}$ orbitals of the Ir atom may be expressed in the $t_{2 g}$ basis of $\left\{d_{x y \uparrow}, d_{y z \uparrow}, d_{z x \uparrow}, d_{x y \downarrow}, d_{y z \downarrow}, d_{z x \downarrow}\right\}$ as

$$
\lambda \vec{L}_{\mathbf{n}} \cdot \vec{S}_{\mathbf{n}}=\frac{\lambda}{2}\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \mathrm{i} & -1  \tag{2}\\
0 & 0 & \mathrm{i} & -\mathrm{i} & 0 & 0 \\
0 & -\mathrm{i} & 0 & 1 & 0 & 0 \\
0 & \mathrm{i} & 1 & 0 & 0 & 0 \\
-\mathrm{i} & 0 & 0 & 0 & 0 & -\mathrm{i} \\
-1 & 0 & 0 & 0 & \mathrm{i} & 0
\end{array}\right)_{\mathbf{n}}
$$

The local energy levels are split into $-\lambda$ for a doublet (total angular momentum $j=\frac{1}{2}$ ) and $\lambda / 2$ for a quadruplet $\left(j=\frac{3}{2}\right)$. The orthonormal eigenvectors $|j, m\rangle$ are

$$
\begin{align*}
\mid j & \left.=\frac{1}{2}, m=+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left(d_{x y \uparrow}+\mathrm{i} d_{y z \downarrow}+d_{z x \downarrow}\right), \\
\mid j & \left.=\frac{1}{2}, m=-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left(d_{x y \downarrow}+\mathrm{i} d_{y z \uparrow}-d_{z x \uparrow}\right), \\
\mid j & \left.=\frac{3}{2}, m=+\frac{3}{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\mathrm{i} d_{y z \uparrow}+d_{z x \uparrow}\right), \\
\mid j & \left.=\frac{3}{2}, m=+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}\left(2 d_{x y \uparrow}-\mathrm{i} d_{y z \downarrow}-d_{z x \downarrow}\right), \\
\mid j & \left.=\frac{3}{2}, m=-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}\left(2 d_{x y \downarrow}-\mathrm{i} d_{y z \uparrow}+d_{z x \uparrow}\right), \\
\mid j & \left.=\frac{3}{2}, m=-\frac{3}{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\mathrm{i} d_{y z \downarrow}-d_{z x \downarrow}\right) . \tag{3}
\end{align*}
$$

In the new $|j, m\rangle$ basis as ordered in Eq. (3), the Cu-Ir coupling part of Eq. (1) is rewritten as

$$
-\frac{J_{\mathbf{F}}}{6} \sum_{\langle\mathbf{m}, \mathbf{n}\rangle}\left(\begin{array}{cccccc}
(1+2 \epsilon) S_{\mathbf{m}}^{z} & S_{\mathbf{m}}^{-} & -\sqrt{6} \epsilon S_{\mathbf{m}}^{+} & \sqrt{2}(1-\epsilon) S_{\mathbf{m}}^{z} & \sqrt{2} S_{\mathbf{m}}^{-} & 0  \tag{4}\\
S_{\mathbf{m}}^{+} & -(1+2 \epsilon) S_{\mathbf{m}}^{z} & 0 & \sqrt{2} S_{\mathbf{m}}^{+} & -\sqrt{2}(1-\epsilon) S_{\mathbf{m}}^{z} & -\sqrt{6} \epsilon S_{\mathbf{m}}^{-} \\
-\sqrt{6} \epsilon S_{\mathbf{m}}^{-} & 0 & -3 \epsilon S_{\mathbf{m}}^{z} & \sqrt{3} \epsilon S_{\mathbf{m}}^{-} & 0 & 0 \\
\sqrt{2}(1-\epsilon) S_{\mathbf{m}}^{z} & \sqrt{2} S_{\mathbf{m}}^{-} & \sqrt{3} \epsilon S_{\mathbf{m}}^{+} & (2+\epsilon) S_{\mathbf{m}}^{z} & 2 S_{\mathbf{m}}^{-} & 0 \\
\sqrt{2} S_{\mathbf{m}}^{+} & -\sqrt{2}(1-\epsilon) S_{\mathbf{m}}^{z} & 0 & 2 S_{\mathbf{m}}^{+} & -(2+\epsilon) S_{\mathbf{m}}^{z} & \sqrt{3} \epsilon S_{\mathbf{m}}^{-} \\
0 & -\sqrt{6} \epsilon S_{\mathbf{m}}^{+} & 0 & 0 & \sqrt{3} \epsilon S_{\mathbf{m}}^{+} & 3 \epsilon S_{\mathbf{m}}^{z}
\end{array}\right)_{\mathbf{n}}
$$

for the Cu atom on site $\mathbf{m}$ and the Ir atom on site $\mathbf{n}$ where $\epsilon=J_{\mathrm{AF}} / J_{\mathrm{F}}>0 . \vec{S}_{\mathbf{m}}$ is a shorthand notation of $\vec{S}_{\mathbf{m}, x^{2}-y^{2}}$.

## A. The zeroth order

In the large $\lambda$ limit, the Kramers doublet $(j=1 / 2)$ constitute the low-energy sector of Eq. (1) on the Ir sites. For infinite $\lambda$, one may retain only the Kramers doublet subspace of Eq. (4), i.e., the zeroth-order approximation:

$$
\begin{equation*}
H^{(0)}=-\frac{J_{\mathrm{F}}}{3} \sum_{\langle\mathbf{m}, \mathbf{n}\rangle} S_{\mathbf{m}}^{x} s_{\mathbf{n}}^{x}+S_{\mathbf{m}}^{y} s_{\mathbf{n}}^{y}+(1+2 \epsilon) S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z} \tag{5}
\end{equation*}
$$

where $\vec{s}_{\mathbf{n}}$ is the isospin $(j=1 / 2)$ on the Ir site given by

$$
\begin{equation*}
\vec{s}_{\mathbf{n}}=\frac{1}{2} \sum_{m m^{\prime}}\left|j=\frac{1}{2}, m\right\rangle \vec{\sigma}_{m m^{\prime}}\left\langle j=\frac{1}{2}, m^{\prime}\right| \tag{6}
\end{equation*}
$$

Since $\epsilon=J_{\mathrm{AF}} / J_{\mathrm{F}}>0, H^{(0)}$ possesses an easy $z$-axis anisotropy. The magnon dispersion would be $\omega(k)=\frac{1}{3} J_{\mathrm{F}}(1+$ $2 \epsilon-\cos k)$ with the gap of $2 \epsilon J_{\mathrm{F}} / 3=2 J_{\mathrm{AF}} / 3$.

## B. The second-order perturbation

For large but finite $\lambda$, the second-order perturbation of Eq. (4) gives rise to an additional anisotropic term:

$$
\begin{equation*}
H^{(2)}=-\frac{\left(J_{\mathbf{F}} / 6\right)^{2}}{3 \lambda / 2} 4\left(1+3 \epsilon^{2}\right) \sum_{\left\langle\left\langle\mathbf{m}, \mathbf{m}^{\prime}\right\rangle\right\rangle}\left\{S_{\mathbf{m}}^{x} S_{\mathbf{m}^{\prime}}^{x}+S_{\mathbf{m}}^{y} S_{\mathbf{m}^{\prime}}^{y}+\gamma_{2} S_{\mathbf{m}}^{z} S_{\mathbf{m}^{\prime}}^{z}\right\} \tag{7}
\end{equation*}
$$

where $\left\langle\left\langle\mathbf{m}, \mathbf{m}^{\prime}\right\rangle\right\rangle$ means that the nearest-neighbor Cu sites. $\gamma_{2}=(1-\epsilon)^{2} /\left(1+3 \epsilon^{2}\right)$. Note that $\gamma_{2}<1$ for $\epsilon>0$; thus, AF interaction $J_{\mathrm{AF}}$ induces an easy $x y$-plane anisotropy in $H^{(2)}$.

We thus arrive at a minimum effective low-energy spin Hamiltonian, $H_{\text {eff }}=H^{(0)}+H^{(2)}$ :

$$
\begin{equation*}
H_{\mathrm{eff}}=-J_{1} \sum_{\langle\mathbf{m}, \mathbf{n}\rangle}\left\{S_{\mathbf{m}}^{x} s_{\mathbf{n}}^{x}+S_{\mathbf{m}}^{y} s_{\mathbf{n}}^{y}+\gamma_{1} S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z}\right\}-J_{2} \sum_{\left\langle\left\langle\mathbf{m}, \mathbf{m}^{\prime}\right\rangle\right\rangle}\left\{S_{\mathbf{m}}^{x} S_{\mathbf{m}^{\prime}}^{x}+S_{\mathbf{m}}^{y} S_{\mathbf{m}^{\prime}}^{y}+\gamma_{2} S_{\mathbf{m}}^{z} S_{\mathbf{m}^{\prime}}^{z}\right\} \tag{8}
\end{equation*}
$$

where $J_{1}=J_{\mathrm{F}} / 3, \gamma_{1}=1+2 \epsilon, J_{2}=2\left(1+3 \epsilon^{2}\right) J_{\mathrm{F}}^{2} /(27 \lambda)$, and $\gamma_{2}=(1-\epsilon)^{2} /\left(1+3 \epsilon^{2}\right)$.

## III. THE EFFECTS OF $\mathrm{IrO}_{6}$ OCTAHEDRAL DISTORTION

I further derived $H_{\text {eff }}$ in the presence of the level splitting between $x y$ and $\{y z, z x\}$ corresponding to the realistic octahedral distortion. The additional term to Eq. (1) is

$$
\sum_{\mathbf{n} \sigma} \Delta d_{\mathbf{n}, x y, \sigma}^{\dagger} d_{\mathbf{n}, x y, \sigma}
$$

The local energy levels are split into three doublets with energy, orthonormal eigenvectors, and $m_{j}$ being

$$
\begin{gather*}
E_{0}=\frac{\lambda}{4}\left(-1+\delta-\sqrt{9+2 \delta+\delta^{2}}\right)\left\{\begin{aligned}
\left|\phi_{1}\right\rangle & =\frac{1}{\sqrt{2+p^{2}}}\left(p d_{x y \uparrow}+\mathrm{i} d_{y z \downarrow}+d_{z x \downarrow}\right), m_{j}=+\frac{1}{2} \\
\left|\phi_{2}\right\rangle & =\frac{1}{\sqrt{2+p^{2}}}\left(p d_{x y \downarrow}+\mathrm{i} d_{y z \uparrow}-d_{z x \uparrow}\right), m_{j}=-\frac{1}{2}
\end{aligned}\right. \\
E_{1}=\frac{\lambda}{2}
\end{gather*}\left\{\begin{array}{l}
\left|\phi_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(\mathrm{i} d_{y z \uparrow}+d_{z x \uparrow}\right), m_{j}=+\frac{3}{2}  \tag{9}\\
\left|\phi_{6}\right\rangle=\frac{1}{\sqrt{2}}\left(\mathrm{i} d_{y z \downarrow}-d_{z x \downarrow}\right), m_{j}=-\frac{3}{2}
\end{array}\right] \begin{aligned}
& \left|\phi_{4}\right\rangle=\frac{1}{\sqrt{4+2 p^{2}}}\left[2 d_{x y \uparrow}-p\left(\mathrm{i} d_{y z \downarrow}+d_{z x \downarrow}\right)\right], m_{j}=+\frac{1}{2} \\
& \left|\phi_{5}\right\rangle=\frac{1}{\sqrt{4+2 p^{2}}}\left[2 d_{x y \downarrow}-p\left(\mathrm{i} d_{y z \uparrow}-d_{z x \uparrow}\right)\right], m_{j}=-\frac{1}{2}
\end{aligned}
$$

where $\delta=2 \Delta / \lambda$ and $p=\left(-1-\delta+\sqrt{9+2 \delta+\delta^{2}}\right) / 2$. To reproduce the observed $d$ - $d$ excitation peaks at 0.58 eV and 0.81 eV (Ref. 1), using $E_{1}-E_{0}=0.58 \mathrm{eV}$ and $E_{2}-E_{0}=0.81 \mathrm{eV}$, one obtains $\lambda=0.44 \mathrm{eV}$ and $\Delta=0.31 \mathrm{eV}$ ( $p=0.65$ ).

In the new basis as ordered in Eq. (9), the Cu-Ir coupling part of Eq. (1) is rewritten as

$$
-\frac{J_{\mathbf{F}}}{4+2 p^{2}} \sum_{\langle\mathbf{m n}\rangle}\left(\begin{array}{cccccc}
\left(p^{2}+2 \epsilon\right) S_{\mathbf{m}}^{z} & p^{2} S_{\mathbf{m}}^{-} & -\sqrt{4+2 p^{2}} \epsilon S_{\mathbf{m}}^{+} & \sqrt{2}|p|(1-\epsilon) S_{\mathbf{m}}^{z} & \sqrt{2}|p| S_{\mathbf{m}}^{-} & 0  \tag{10}\\
p^{2} S_{\mathbf{m}}^{+} & -\left(p^{2}+2 \epsilon\right) S_{\mathbf{m}}^{z} & 0 & \sqrt{2}|p| S_{\mathbf{m}}^{+} & -\sqrt{2}|p|(1-\epsilon) S_{\mathbf{m}}^{z} & -\sqrt{4+2 p^{2}} \epsilon S_{\mathbf{m}}^{-} \\
-\sqrt{4+2 p^{2}} \epsilon S_{\mathbf{m}}^{-} & 0 & -\left(2+p^{2}\right) \epsilon S_{\mathbf{m}}^{z} & \sqrt{2+p^{2}}|p| \epsilon S_{\mathbf{m}}^{-} & 0 & 0 \\
\sqrt{2}|p|(1-\epsilon) S_{\mathbf{m}}^{z} & \sqrt{2}|p| S_{\mathbf{m}}^{-} & \sqrt{2+p^{2}}|p| \epsilon S_{\mathbf{m}}^{+} & \left(2+\epsilon p^{2}\right) S_{\mathbf{m}}^{z} & 2 S_{\mathbf{m}}^{-} & 0 \\
\sqrt{2}|p| S_{\mathbf{m}}^{+} & -\sqrt{2}|p|(1-\epsilon) S_{\mathbf{m}}^{z} & 0 & 2 S_{\mathbf{m}}^{+} & -\left(2+\epsilon p^{2}\right) S_{\mathbf{m}}^{z} & \sqrt{2+p^{2}}|p| \epsilon S_{\mathbf{m}}^{-} \\
0 & -\sqrt{4+2 p^{2}} \epsilon S_{\mathbf{m}}^{+} & 0 & 0 & \sqrt{2+p^{2}}|p| \epsilon S_{\mathbf{m}}^{+} & \left(2+p^{2}\right) \epsilon S_{\mathbf{m}}^{z}
\end{array}\right)
$$

Retaining only the lowest-energy doublet, we arrive at a minimum effective low-energy spin Hamiltonian, $H_{\text {eff }}=$ $H^{(0)}+H^{(2)}$ :

$$
\begin{align*}
& H^{(0)}=-\frac{p^{2}}{2+p^{2}} J_{\mathrm{F}} \sum_{\langle\mathbf{m}, \mathbf{n}\rangle}\left(\vec{S}_{\mathbf{m}} \cdot \vec{s}_{\mathbf{n}}+\frac{2 \epsilon}{p^{2}} S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z}\right)  \tag{11}\\
& H^{(2)}=-\left(\frac{J_{\mathrm{F}}}{4+2 p^{2}}\right)^{2} \sum_{\left\langle\left\langle\mathbf{m}, \mathbf{m}^{\prime}\right\rangle\right\rangle}\left\{\left(\frac{4\left(2+p^{2}\right) \epsilon^{2}}{E_{1}-E_{0}}+\frac{4 p^{2}}{E_{2}-E_{0}}\right)\left(S_{\mathbf{m}}^{x} S_{\mathbf{m}^{\prime}}^{x}+S_{\mathbf{m}}^{y} S_{\mathbf{m}^{\prime}}^{y}\right)+\frac{4 p^{2}(1-\epsilon)^{2}}{E_{2}-E_{0}} S_{\mathbf{m}^{2}}^{z} S_{\mathbf{m}^{\prime}}^{z}\right\}, \tag{12}
\end{align*}
$$

where $\vec{s}_{\mathbf{n}}$ is the isospin on the $\operatorname{Ir}$ site given by

$$
\begin{equation*}
\vec{s}_{\mathbf{n}}=\frac{1}{2} \sum_{i, i^{\prime} \in\{1,2\}}\left|\phi_{i}\right\rangle \vec{\sigma}_{i i^{\prime}}\left\langle\phi_{i^{\prime}}\right| . \tag{13}
\end{equation*}
$$

The structure of the effective Hamiltonian [Eq. (8)] remains the same - only the parameters are renormalized. The degree of anisotropy is modified by the splitting. It can be summarized by

$$
\begin{align*}
H_{\mathrm{eff}} & =H^{(0)}+H^{(2)} \\
H^{(0)} & =-J_{1} \sum_{\langle\mathbf{m}, \mathbf{n}\rangle}\left\{S_{\mathbf{m}}^{x} s_{\mathbf{n}}^{x}+S_{\mathbf{m}}^{y} s_{\mathbf{n}}^{y}+\gamma_{1} S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z}\right\}  \tag{14}\\
H^{(2)} & =-J_{2} \sum_{\left\langle\left\langle\mathbf{m}, \mathbf{m}^{\prime}\right\rangle\right\rangle}\left\{S_{\mathbf{m}}^{x} S_{\mathbf{m}^{\prime}}^{x}+S_{\mathbf{m}}^{y} S_{\mathbf{m}^{\prime}}^{y}+\gamma_{2} S_{\mathbf{m}}^{z} S_{\mathbf{m}^{\prime}}^{z}\right\},
\end{align*}
$$

where

$$
\begin{align*}
J_{1} & =J_{\mathrm{F}} \frac{p^{2}}{2+p^{2}}>0 \\
\gamma_{1} & =1+\frac{2 \epsilon}{p^{2}}>1 \\
J_{2} & =\left(\frac{J_{\mathrm{F}}}{4+2 p^{2}}\right)^{2}\left(\frac{4\left(2+p^{2}\right) \epsilon^{2}}{E_{1}-E_{0}}+\frac{4 p^{2}}{E_{2}-E_{0}}\right)>0 \\
\gamma_{2} & =\frac{(1-\epsilon)^{2}}{1+\left(1+\frac{2}{p^{2}}\right) \epsilon^{2} \frac{E_{2}-E_{0}}{E_{1}-E_{0}}}<1 \tag{15}
\end{align*}
$$

Therefore, the reduction of $p$ from unity via positive $\Delta$ will enhance the $\gamma_{1}$ anisotropy and reduce the magnon bandwidth.

Note that $\gamma_{2}<\frac{(1-\epsilon)^{2}}{1+\left(1+\frac{2}{p^{2}}\right) \epsilon^{2}}<1$ for $\epsilon>0$.
For $\delta \rightarrow-\infty, p=\infty$ (i.e., the only relevant Ir orbital is $d_{x y}$ ), $J_{1}=J_{\mathrm{F}}, \gamma_{1}=1, J_{2}=0, J_{2} \gamma_{2}=0$.
For $\delta \rightarrow+\infty, p=0$ (i.e., the only relevant Ir orbital are $d_{y z}$ and $d_{z x}$ ), $E_{0}=-\lambda / 2, E_{1}=\lambda / 2, E_{2}=\infty, J_{1}=0$, $J_{1} \gamma_{1}=2 \epsilon J_{\mathrm{F}}, J_{2}=J_{\mathrm{F}}^{2} \epsilon^{2} /(2 \lambda), \gamma_{2}=0$.

## IV. SPIN-WAVE SPECTRUM

Using the Holstein-Primakoff transformation with respect to the FM ground state:

$$
\begin{align*}
S_{\mathbf{m}}^{z} & =S-a_{\mathbf{m}}^{\dagger} a_{\mathbf{m}}, S_{\mathbf{m}}^{+}=\sqrt{2 S} a_{\mathbf{m}}^{\dagger}, S_{\mathbf{m}}^{-}=\sqrt{2 S} a_{\mathbf{m}} \\
s_{\mathbf{n}}^{z} & =S-b_{\mathbf{n}}^{\dagger} b_{\mathbf{n}}, s_{\mathbf{n}}^{+}=\sqrt{2 S} b_{\mathbf{n}}^{\dagger}, s_{\mathbf{n}}^{-}=\sqrt{2 S} b_{\mathbf{n}} \tag{16}
\end{align*}
$$

where $S=1 / 2$, and transforming Eq. (15) to the momentum space, we get

$$
H_{\mathrm{eff}}=z S \sum_{q}\left(a_{q}^{\dagger}, b_{q}^{\dagger}\right)\left(\begin{array}{cc}
\gamma_{1} J_{1} & -J_{1} \cos (q a / 2)  \tag{17}\\
-J_{1} \cos (q a / 2) & \gamma_{1} J_{1}+\gamma_{2} J_{2}-J_{2} \cos (q a)
\end{array}\right)\binom{a_{q}}{b_{q}}
$$

where $a$ is the nearest Ir-Ir distance, and $q$ is a momentum in the Brillouin zone corresponding to the unit cell with one Cu and one Ir. The spin-wave dispersion is

$$
\begin{equation*}
\omega_{\mp}(q)=\frac{1}{2}\left[2 \gamma_{1} J_{1}+\gamma_{2} J_{2}-J_{2} \cos (q a)\right] \mp \frac{1}{2} \sqrt{\left[\gamma_{2} J_{2}-J_{2} \cos (q a)\right]^{2}+4 J_{1}^{2} \cos ^{2}(q a / 2)} . \tag{18}
\end{equation*}
$$

The second-neighbor interaction opens another gap of size $\left(1+\gamma_{2}\right) J_{2}$ at $q=\pi / a$ in the middle of the band.
The weight of Ir character in the lower (-) and upper (+) branches of the magnon band is

$$
\begin{align*}
& I_{+}(q)=J_{1}^{2} \cos ^{2}(q a / 2) /\left\{J_{1}^{2} \cos ^{2}(q a / 2)+\left[\gamma_{1} J_{1}-\omega_{+}(q)\right]^{2}\right\} \\
& I_{-}(q)=1-I_{+}(q) \tag{19}
\end{align*}
$$

Note $I_{-}(q) \equiv I_{+}(q) \equiv 1 / 2$ for $J_{2}=0$. But, for $J_{2}>0, I_{\mp}(q)$ dramatically changes; for example, $I_{-}(q)=1$ and $I_{+}(q)=0$ at $q=\pi / a$. This is understood as follows: As shown in Eq. (17), the magnons are separated between Ir and Cu sublattices at $q=\pi / a$ with the excitation energy at the $\operatorname{Ir}$ site being lower by $J_{2}\left(1+\gamma_{2}\right)$. Therefore, $\omega_{-}(q)$ and $\omega_{+}(q)$ have full and zero weight of $\operatorname{Ir}$ character at $q=\pi / a$, respectively, which may explain the missing of $\omega_{+}(q)$ near $q=\pi / a$ in the $\operatorname{Ir} L_{3}$ edge RIXS. Because of the conservation of the full weight, the weight of Cu character in $\omega_{-}(q)$ and $\omega_{+}(q)$ is $I_{+}(q)$ and $I_{-}(q)$, respectively. Therefore, $\omega_{+}(q)$ has full weight of Cu character at $q=\pi / a$ and should be detectable by $\mathrm{Cu} L_{3}$ edge RIXS experiment.

## V. HOW TO FIT THEORY WITH EXPERIMENT

There are four parameters in Eq. (15), namely $J_{1}, \gamma_{1}, J_{2}, \gamma_{2}$. The feature, $I_{-}(q)=1$ at $q=\pi / a$, is useful in fitting the theory to the experiment. The observed magnon energy at $q=\pi / a$ is set as the top of $\omega_{-}(q)$, i.e., $\gamma_{1} J_{1}=53.5$ meV , which together with $\lambda=0.44 \mathrm{eV}$ and $\Delta=0.31 \mathrm{eV}$ obtained from local $d-d$ excitation probes ${ }^{1}$ leaves only one parameter $\left(J_{1}\right)$ in Eq. (15) as a free one. We obtain $J_{1}=21 \mathrm{meV}, \gamma_{1} J_{1}=53.5 \mathrm{meV}, J_{2}=2.4 \mathrm{meV}, \gamma_{2} J_{2}=0.6$ meV satisfying the constraints, Eq. 15 . Thus, $\gamma_{1}=2.548$ and $\gamma_{2}=0.25$. Since $J_{2} / \gamma_{1} J_{1}=0.045, H^{(2)}$ is negligible for energy consideration, while it dramatically changes the atom-specific spectral weight, as shown in the last section.

## VI. MULTI-MAGNON BOUND STATES

The dispersion of $n$-magnon bound states for the $S=1 / 2$ Heisenberg quantum ferromagnet described by $H^{(0)}$ is given by the expression ${ }^{2}$

$$
\begin{equation*}
E_{n}(k)=\frac{2 J_{1} \sinh \Phi}{\sinh (n \Phi)}\left(\sinh ^{2}(n \Phi / 2)+\sin ^{2}(q a / 4)\right) \tag{20}
\end{equation*}
$$

where $\cosh \Phi=\gamma_{1}$. For the present case $\gamma_{1}=2.548$ and $\Phi=1.587$. Fig. 2 displays the dispersion curves for $n=1,2,3,4$ for this particular anisotropy. The multi-magnon $(n \geq 2)$ bound states all reside in the middle of the single-magnon $(n=1)$ band.

Due to strong spin-orbit coupling at Ir sites, lattice irregularities act as an effective magnetic field applying on iridium isospins $s_{n}$. Such random magnetic field can lead to decay of high-energy single-magnon excitations into


FIG. 2. Spectra of $n$-magnon bound states.
multi-magnon excitation states. For multi-magnon bound states, such process becomes possible for

$$
\begin{equation*}
E_{1}(q)>E_{n}(0) \approx 50 \mathrm{meV} \tag{21}
\end{equation*}
$$

In addition, the decay into the two-magnon continuum is possible for

$$
\begin{equation*}
E_{1}(q)>2 E_{1}(0) \approx 60 \mathrm{meV} \tag{22}
\end{equation*}
$$

These decay processes are likely additional sources for the missing of the upper branch (between 55 and 75 meV ) of the single-magnon excitation in the $\operatorname{Ir} L_{3}$ edge RIXS data.

* wyin@bnl.gov
${ }^{1}$ X. Liu et al., Phys. Rev. Lett. 109, 157401 (2012).
${ }^{2}$ Travaux de Michel Gaudin, Modelès Exactement Résolus (Les Editions de Physique, Courtabouef and Cambridge, 1995).

