On the possibility to detect multipolar order in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ by the electric quadrupolar transition of resonant elastic x-ray scattering

Y. L. Wang, ${ }^{1}$ G. Fabbris, ${ }^{1}$ D. Meyers, ${ }^{1}$ N. H. Sung, ${ }^{2}$ R. E. Baumbach, ${ }^{2,3}$ E. D. Bauer, ${ }^{2}$ P. J. Ryan,,${ }^{4,5}$ J.-W. Kim, ${ }^{4}$ X. Liu, ${ }^{6}$ M. P. M. Dean, ${ }^{1}$ G. Kotliar, ${ }^{1,7}$ and X. Dai ${ }^{6}$
${ }^{1}$ Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{2}$ Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
${ }^{3}$ Condensed Matter Group, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
${ }^{4}$ Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{5}$ School of Physical Sciences, Dublin City University, Dublin 9, Ireland
${ }^{6}$ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
${ }^{7}$ Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA

(Received 26 May 2017; published 30 August 2017)

Abstract

Resonant elastic x-ray scattering is a powerful technique for measuring multipolar order parameters. In this paper, we theoretically and experimentally study the possibility of using this technique to detect the proposed multipolar order parameters in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ at the $\mathrm{U}-L_{3}$ edge with the electric quadrupolar transition. Based on an atomic model, we calculate the azimuthal dependence of the quadrupolar transition at the $\mathrm{U}-L_{3}$ edge. The results illustrate the potential of this technique for distinguishing different multipolar order parameters. We then perform experiments on ultraclean single crystals of $\mathrm{URu}_{2} \mathrm{Si}_{2}$ at the $\mathrm{U}-L_{3}$ edge to search for the predicted signal, but do not detect any indications of multipolar moments within the experimental uncertainty. We theoretically estimate the orders of magnitude of the cross section and the expected count rate of the quadrupolar transition and compare them to the dipolar transitions at the $\mathrm{U}-M_{4}$ and $\mathrm{U}-L_{3}$ edges, clarifying the difficulty in detecting higher order multipolar order parameters in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ in the current experimental setup.

DOI: 10.1103/PhysRevB. 96.085146

I. INTRODUCTION

The heavy-fermion compound $\mathrm{URu}_{2} \mathrm{Si}_{2}$ undergoes a phase transition at $T_{H O}=17.5 \mathrm{~K}$ to the so-called "hidden order" (HO) phase, in which the sharp discontinuous specific heat signals a clear second-order phase transition [1]. Earlier studies based on neutron scattering [2,3] and muon spin rotation [4] conclude that it is a phase transition to a type-I antiferromagnet with the ordered moment polarized along the tetragonal c axis. However, the observed ordered moment is anomalously very small $\left(\sim 0.04 \pm 0.01 \mu_{\mathrm{B}}\right)$ [2-4], which cannot account for the observed large entropy loss $(\sim 0.2 R \ln 2)$, and the primary order parameter (OP) is unlikely to be a magnetic dipole. Further high-pressure experiments on $\mathrm{URu}_{2} \mathrm{Si}_{2}$ find a firstorder phase transition from the HO phase to a large moment antiferromagnetic (LMAF) phase [5-7]. These findings further indicate that the HO phase is distinct from the LMAF and the primary OP should be some complex object which is different from a magnetic dipole.

Theoretically, many different schemes of OPs have been proposed, such as multipolar order [8-18], charge- or spindensity wave [19-22], chiral spin state [23], orbital antiferromagnetism [24], helicity order [25], dynamic symmetry breaking [26], nematic order [27], hybridization wave [28], and hastatic order $[29,30]$. However, through 30 years of efforts, there is still a lack of convincing evidence to uncover the HO mystery. For a more complete review of the theoretical and experimental progress, see Refs. [31,32].

Among the many proposals of OPs, the multipolar order is a promising candidate. Recently, Raman-scattering experiments [33-35] find a sharp low-energy excitation with $A_{2 g}$ symmetry below $T_{H O}$. Further analysis [34,35] indicates that this $A_{2 g}$ excitation is consistent with the hexadecapolar order proposed
by Haule and Kotliar [14]. However, these Raman-scattering experiments provide indirect information about the ground state in the sense that they cannot measure modes at the ordering wave vector. Wave-vector-resolved techniques are desirable to make more definitive conclusions. Among the many options, resonant elastic x-ray scattering (REXS) is a powerful tool to directly detect the order of electrons including complex spin and charge multipoles [36,37]. There have been already a few REXS experiments [38-41] performed to identify the multipolar order in the HO phase of $\mathrm{URu}_{2} \mathrm{Si}_{2}$. Amitsuka et al. [40] and Walker et al. [41] performed REXS experiments at the $\mathrm{U}-M_{4}\left(3 d_{3 / 2} \rightarrow 5 f\right)$ edge below $T_{H O}$ and their results have excluded the possibility of any quadrupolar OPs. However, the M_{4} edge involves electric dipolar transitions ($E 1$) and has minimal sensitivity to multipoles with a rank larger than 2 . The electric quadrupolar transition (E2) can be used to detect octupole and hexadecapole, but unfortunately, the intensity of $E 2$ is usually much weaker than that of $E 1$.

Recently, dos Reis et al. [42] discussed a sizable E2 contribution to the $\mathrm{U}-L_{2,3}$ x-ray magnetic circular dichroism signal in their study of U compounds. The enhanced $E 2$ signal may be due to the large wave vector k (10.615 and $8.699 \AA^{-1}$) at $L_{2,3}$ edges which means that the term $i \boldsymbol{k} \cdot \boldsymbol{r}$ in the expansion of $e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$ cannot be ignored. This unexpected finding provides a promising hope to use the $E 2$ transition to directly detect multipolar OPs in $\mathrm{URu}_{2} \mathrm{Si}_{2}$.

In this paper, we theoretically and experimentally study the possibility to detect the proposed multipolar OPs in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ via $E 2$ transition of REXS. Based on an atomic model, we first calculate the azimuthal dependences to show that it can identify different multipolar OPs by symmetry. Then, we do REXS experiments on an ultraclean sample of $\mathrm{URu}_{2} \mathrm{Si}_{2}$ single

FIG. 1. (a) The crystal structure of $\mathrm{URu}_{2} \mathrm{Si}_{2}$. We assume a type-I antiferromultipolar order on uranium sites. (b) Illustration of experimental setup. A beam of polarized x rays \boldsymbol{k} is incident on the [001] sample face with an angle θ and scattered by electrons, and then the scattered x rays \boldsymbol{k}^{\prime} with outgoing angle θ and specific polarization is analyzed. φ is the azimuthal angle. For linear polarization, $\pi(\sigma)$ polarization is parallel (normal) to the scattering plane.
crystal to search for the possible signal of multipolar OPs. Finally, we justify the experimental results by theoretically estimating the relative strength of $E 2$ transition at the L_{3} edge ($L_{3}-E 2$) compared with $E 1$ transition at the M_{4} edge ($M_{4}-E 1$) and L_{3} edge ($2 p_{3 / 2} \rightarrow 6 d, L_{3}-E 1$), and the expected flux of the scattered photons.

II. METHODS

A. Atomic calculations

Figure 1 (a) is the crystal structure of $\mathrm{URu}_{2} \mathrm{Si}_{2}$, which has a body-centered tetragonal structure. In the present study, we assume a type-I antiferromultipolar order on U sites, where sublattice $A, \mathrm{U}(0,0,0)$, and sublattice $B, \mathrm{U}(0.5,0.5,0.5)$, have opposite signs of the expectation value of the multipolar moment. The ordering wave vector is $Q_{\mathrm{AF}}=(0,0,1)$. Figure 1(b) is a typical experimental setup of REXS. A beam of polarized x ray \boldsymbol{k} is incident on the sample with an angle θ and then the scattered x ray \boldsymbol{k}^{\prime} with outgoing angle θ and specific polarization is analyzed. The double-differential cross section [36] for REXS is

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \Omega d E}=r_{e}^{2} m^{2} \omega_{k^{\prime}}^{3} \omega_{k}\left|\mathcal{F}_{g g}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}, \hbar \omega_{k}, \hbar \omega_{k^{\prime}}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}^{\prime}\right)\right|^{2} \tag{1}
\end{equation*}
$$

where $r_{e}=e^{2} /\left(4 \pi \epsilon_{0} m c^{2}\right)$ is the classical electron radius, $\mathcal{F}_{g g}$ is the scattering amplitude at zero temperature,

$$
\begin{equation*}
\mathcal{F}_{g g}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}, \hbar \omega_{k}, \hbar \omega_{k^{\prime}}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}^{\prime}\right)=\sum_{n} \frac{\langle g| \hat{\mathcal{D}}^{\prime \dagger}|n\rangle\langle n| \hat{\mathcal{D}}|g\rangle}{\hbar \omega_{k}+E_{g}-E_{n}+i \Gamma / 2}, \tag{2}
\end{equation*}
$$

where \boldsymbol{k} is the incoming light with energy $\hbar \omega_{k}$ and polarization $\boldsymbol{\epsilon}, \boldsymbol{k}^{\prime}$ is the outgoing light with energy $\hbar \omega_{k^{\prime}}$ and polarization $\boldsymbol{\epsilon}^{\prime}$, and $\boldsymbol{q}=\boldsymbol{k}^{\prime}-\boldsymbol{k}$ is the scattering vector. $|g\rangle, E_{g}$ is the ground state and $|n\rangle, E_{n}$ is the eigenstate of the intermediate Hamiltonian including a core hole. Γ is the lifetime width of the core hole. For $\mathrm{U}, \Gamma \approx 8 \mathrm{eV}$ at the L_{3} edge and $\Gamma \approx 3.5 \mathrm{eV}$ at the M_{4} edge. $\hat{\mathcal{D}}$ and $\hat{\mathcal{D}}^{\prime \dagger}$ are the transition operators for
absorption and emission processes,

$$
\begin{gather*}
\hat{\mathcal{D}}=\boldsymbol{P}^{(m)} \cdot \sum_{\boldsymbol{R}} \hat{\boldsymbol{D}}_{\boldsymbol{R}}^{(m)}=\boldsymbol{P}^{(m)} \cdot\left(\sum_{\boldsymbol{R}} e^{i \boldsymbol{k} \cdot \boldsymbol{R}} \sum_{i} \hat{\boldsymbol{r}}_{\boldsymbol{R}, i}^{(m)}\right), \tag{3}\\
\hat{\mathcal{D}}^{\prime \dagger}=\boldsymbol{P}^{(m) / \star} \cdot \sum_{\boldsymbol{R}} \hat{\boldsymbol{D}}_{\boldsymbol{R}}^{(m) \dagger}=\boldsymbol{P}^{(m) / \star} \cdot\left(\sum_{\boldsymbol{R}} e^{-i \boldsymbol{k}^{\prime} \cdot \boldsymbol{R}} \sum_{i} \hat{\boldsymbol{r}}_{\boldsymbol{R}, i}^{(m) \dagger}\right), \tag{4}
\end{gather*}
$$

where \boldsymbol{R} is the site index, and i is the index of electron that is bound to site $\boldsymbol{R} . \boldsymbol{P}^{(m)}$ is a rank- m tensor for the geometry part including polarization and wave vector of photon, $\hat{\boldsymbol{r}}^{(m)}$ is a single-particle rank- m tensor operator of electron.

For the E1-E1 transition,

$$
\begin{gather*}
\boldsymbol{P}^{(1)} \cdot \hat{\boldsymbol{r}}^{(1)}=\epsilon_{x} \hat{x}+\epsilon_{y} \hat{y}+\epsilon_{z} \hat{z} \tag{5}\\
\boldsymbol{P}^{(1) / \star} \cdot \hat{\boldsymbol{r}}^{(1) \dagger}=\epsilon_{x}^{\prime \star} \hat{x}+\epsilon_{y}^{\prime \star} \hat{y}+\epsilon_{z}^{\prime \star} \hat{z} \tag{6}
\end{gather*}
$$

For the $E 2-E 2$ transition [43],

$$
\begin{gather*}
\left(\hat{\boldsymbol{r}}^{(2)}\right)_{1}=\frac{\sqrt{3}}{2}\left(\hat{x}^{2}-\hat{y}^{2}\right), \tag{7}\\
\left(\hat{\boldsymbol{r}}^{(2)}\right)_{2}=\frac{1}{2}\left(3 \hat{z}^{2}-\hat{r}^{2}\right), \tag{8}\\
\left(\hat{\boldsymbol{r}}^{(2)}\right)_{3}=\sqrt{3} \hat{y} \hat{z}, \tag{9}\\
\left(\hat{\boldsymbol{r}}^{(2)}\right)_{4}=\sqrt{3} \hat{z} \hat{x}, \tag{10}\\
\left(\hat{\boldsymbol{r}}^{(2)}\right)_{5}=\sqrt{3} \hat{x} \hat{y}, \tag{11}
\end{gather*}
$$

and

$$
\begin{gather*}
\boldsymbol{P}_{1}^{(2)}=\frac{k}{3} \frac{\sqrt{3}}{2}\left(\epsilon_{x} \tilde{k}_{x}-\epsilon_{y} \tilde{k}_{y}\right), \tag{12}\\
\boldsymbol{P}_{2}^{(2)}=\frac{k}{3} \frac{1}{2}\left(2 \epsilon_{z} \tilde{k}_{z}-\epsilon_{x} \tilde{k}_{x}-\epsilon_{y} \tilde{k}_{y}\right), \tag{13}\\
\boldsymbol{P}_{3}^{(2)}
\end{gather*}=\frac{k}{3} \frac{\sqrt{3}}{2}\left(\epsilon_{y} \tilde{k}_{z}+\epsilon_{z} \tilde{k}_{y}\right), \quad \begin{array}{r}
\boldsymbol{P}_{4}^{(2)}
\end{array}=\frac{k}{3} \frac{\sqrt{3}}{2}\left(\epsilon_{z} \tilde{k}_{x}+\epsilon_{x} \tilde{k}_{z}\right), \quad \begin{aligned}
& \boldsymbol{P}_{5}^{(2)} \tag{14}
\end{aligned}=\frac{k}{3} \frac{\sqrt{3}}{2}\left(\epsilon_{x} \tilde{k}_{y}+\epsilon_{y} \tilde{k}_{x}\right), \quad,
$$

where k and $\tilde{\boldsymbol{k}}$ are the length and direction of the wave vector, respectively. We assume the absorption and emission process take place at the same site, then the scattering amplitude can be written as

$$
\begin{equation*}
\mathcal{F}_{g g} \propto \sum_{\boldsymbol{R}} e^{-i \boldsymbol{q} \cdot \boldsymbol{R}} F_{g g}^{\boldsymbol{R}} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{g g}^{\boldsymbol{R}}=\sum_{n} \frac{\langle g| \hat{\mathcal{D}}_{\boldsymbol{R}}^{\dagger}|n\rangle\langle n| \hat{\mathcal{D}}_{\boldsymbol{R}}|g\rangle}{\hbar \omega_{k}+E_{g}-E_{n}+i \Gamma / 2}, \tag{18}
\end{equation*}
$$

where $\hat{\mathcal{D}}_{\boldsymbol{R}}=\boldsymbol{P}^{(m)} \cdot \hat{\boldsymbol{D}}_{\boldsymbol{R}}^{(m)}$ and $\hat{\mathcal{D}}_{\boldsymbol{R}}^{\dagger}=\boldsymbol{P}^{(m) \star \star} \cdot \hat{\boldsymbol{D}}_{\boldsymbol{R}}^{(m) \dagger}$.

We further make a single-atom approximation, i.e., approximating the states $|g\rangle$ and $|n\rangle$ as single atomic states. Then the total scattering amplitude can be written as the summation of the contributions from two sublattices A and B of U atoms,

$$
\begin{equation*}
\mathcal{F}_{g g} \propto \sum_{\boldsymbol{R}_{A}} e^{-i \boldsymbol{q} \cdot \boldsymbol{R}_{A}} F_{g g}^{\boldsymbol{R}_{A}}+\sum_{\boldsymbol{R}_{B}} e^{-i \boldsymbol{q} \cdot \boldsymbol{R}_{B}} F_{g g}^{\boldsymbol{R}_{B}} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
F_{g g}^{\boldsymbol{R}_{A}} & =\sum_{n} \frac{\left\langle g^{A}\right| \hat{\mathcal{D}}_{\boldsymbol{R}_{A}}^{\dagger}\left|n^{A}\right\rangle\left\langle n^{A}\right| \hat{\mathcal{D}}_{\boldsymbol{R}_{A}}\left|g^{A}\right\rangle}{\hbar \omega_{k}+E_{g^{A}}-E_{n^{A}}+i \Gamma / 2} \tag{20}\\
F_{g g}^{\boldsymbol{R}_{B}} & =\sum_{n} \frac{\left\langle g^{B}\right| \hat{\mathcal{D}}_{\boldsymbol{R}_{B}}^{\dagger}\left|n^{B}\right\rangle\left\langle n^{B}\right| \hat{\mathcal{D}}_{\boldsymbol{R}_{B}}\left|g^{B}\right\rangle}{\hbar \omega_{k}+E_{g^{B}}-E_{n^{B}}+i \Gamma / 2} \tag{21}
\end{align*}
$$

$\left|g^{A}\right\rangle\left(\left|n^{A}\right\rangle\right)$ and $\left|g^{B}\right\rangle\left(\left|n^{B}\right\rangle\right)$ are the ground (intermediate) states of U atoms A and B, respectively. In calculation, we choose the ground states to induce opposite signs of the expectation value of multipolar moment at the A and B sites.

We use the Cowan-Butler-Thole approach [44-47] to exactly diagonalize the atomic Hamiltonian for ground and excited configurations and then get the transition matrix. For $\mathrm{URu}_{2} \mathrm{Si}_{2}$, we assume a $5 f^{2}$ ground configuration. For the $M_{4}-E 1, L_{3}-E 1$ and $L_{3}-E 2$ transitions, the excited configurations are $3 d^{5} 5 f^{3}, 2 p^{5} 5 f^{2} 6 d^{1}$, and $2 p^{5} 5 f^{3}$, respectively. The Slater integrals F^{k}, G^{k} and spin-orbit coupling (SOC) ζ of the valence and core electrons are calculated by the Hartree-Fock (HF) methods in Cowan's code [44]. Usually, HF will overestimate them, so we rescale F^{k}, G^{k} by 80% and rescale SOC ζ by 92% for $2 p$ core hole and 96% for $3 d$ core hole, respectively. The parameters are listed in Tables I-IV in the Appendix.

According to Hund's rule coupling, the $5 f^{2}$ configuration has a ground state with total angular momentum $J=4$ under $S O(3)$ symmetry. With $D_{4 h}$ crystalline electric field symmetry, these nine ground states will split into five singlets and two doublets [17,48]:

$$
\begin{gather*}
\left|A_{1 g}^{(1)}(\alpha)\right\rangle=\cos \alpha|0\rangle+\frac{\sin \alpha}{\sqrt{2}}(|4\rangle+|-4\rangle), \tag{22}\\
\left|A_{1 g}^{(2)}(\alpha)\right\rangle=\sin \alpha|0\rangle-\frac{\cos \alpha}{\sqrt{2}}(|4\rangle+|-4\rangle), \tag{23}\\
\left|A_{2 g}\right\rangle=\frac{i}{\sqrt{2}}(|4\rangle-|-4\rangle), \tag{24}\\
\left|B_{1 g}\right\rangle=\frac{1}{\sqrt{2}}(|2\rangle+|-2\rangle), \tag{25}\\
\left|B_{2 g}\right\rangle=\frac{i}{\sqrt{2}}(|2\rangle-|-2\rangle), \tag{26}\\
\left|E_{g}^{(1)}(\beta)\right\rangle=\cos \beta|\mp 1\rangle+\sin \beta| \pm 3\rangle \tag{27}\\
\left|E_{g}^{(2)}(\beta)\right\rangle=\sin \beta|\mp 1\rangle-\cos \beta| \pm 3\rangle \tag{28}
\end{gather*}
$$

In Ref. [17], the authors list the definition of the multipole up to rank 5. We will follow this definition in the present paper and only discuss multipole up to rank 4 that can, in principle, be detected via the $E 2$ transition. We build different ground states which will induce dipole, quadrupole, octupole, and hexadecapole orders.

The ground state that will induce $A_{2+}\left(A_{2-}\right)$ order can be constructed by a linear combination of $\left|A_{2 g}\right\rangle$ and $\left|A_{1 g}^{(2)}\right\rangle$,

$$
\begin{equation*}
\left|g^{A(B)}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|A_{2 g}\right\rangle \pm e^{i \eta}\left|A_{1 g}^{(2)}\left(40^{\circ}\right)\right|\right) \tag{29}
\end{equation*}
$$

where the plus sign is for $\left|g^{A}\right\rangle$ and the minus sign for $\left|g^{B}\right\rangle$. Note that the subscript $+(-)$ in $A_{2+}\left(A_{2-}\right)$ means time-reversal even (odd). When $\eta=0$, it will induce a A_{2+} hexadecapolar order $H_{z}^{\alpha}=\frac{\sqrt{35}}{2} \overline{J_{x} J_{y}\left(J_{x}^{2}-J_{y}^{2}\right)}$, while $\eta=\pi / 2$ will induce a A_{2-} dipolar order J_{z} and octupolar order $T_{z}^{\alpha}=\frac{1}{2} \overline{J_{z}\left(5 J_{z}^{2}-3 J^{2}\right)}$. This scheme is proposed by Haule and Kotliar [14] by a LDA+DMFT calculation. In their LDA+DMFT calculation, they also figure out α in $A_{1 g}^{(2)}$ should be about $40^{\circ} . H_{z}^{\alpha}$ is proposed to be the primary OP in the HO phase. It can be also induced as a secondary OP in the hastatic order scheme [30].

The ground state that will induce $B_{1+}\left(B_{1-}\right)$ order can be written as

$$
\begin{equation*}
\left|g^{A(B)}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{1 g}\right\rangle \pm e^{i \eta}\left|A_{1 g}^{(2)}\left(40^{o}\right)\right|\right) \tag{30}
\end{equation*}
$$

When $\eta=0$, it will induce a B_{1+} quadrupolar order [10] $O_{22}=\frac{\sqrt{3}}{2} \overline{J_{x}^{2}-J_{y}^{2}}$ and hexadecapolar order $O_{42}=$ $\frac{\sqrt{5}}{4} \frac{\left.J_{x}^{2}-J_{y}^{2}\right)\left(7 J_{z}^{2}-J^{2}\right)}{}$, while $\eta=\pi / 2$ will induce a B_{1-} octupolar order [12] $T_{x y z}=\sqrt{15 J_{x} J_{y} J_{z}}$.

The ground state that will induce $B_{2+}\left(B_{2-}\right)$ order can be written as

$$
\begin{equation*}
\left|g^{A(B)}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{2 g}\right\rangle \pm e^{i \eta}\left|A_{1 g}^{(2)}\left(40^{o}\right)\right|\right) \tag{31}
\end{equation*}
$$

when $\eta=0$ it will induce a B_{2+} quadrupolar order [10] $O_{x y}=$ $\sqrt{3 J_{x} J_{y}}$ and hexadecapolar order $H_{z}^{\beta}=\frac{\sqrt{5}}{2} \overline{J_{x} J_{y}\left(7 J_{z}^{2}-J^{2}\right)}$, while $\eta=\pi / 2$ will induce a B_{2-} octupolar order [12] $T_{z}^{\beta}=$ $\frac{\sqrt{15}}{2} \overline{J_{z}\left(J_{x}^{2}-J_{y}^{2}\right)}$.

B. REXS experiment

$\mathrm{URu}_{2} \mathrm{Si}_{2}$ samples were grown using the Czocharalski method [49]. The residual resistivity ratio (RRR) was measured in various pieces of sample; the REXS experiment was performed on the sample with the highest RRR ($=361$). REXS measurements were performed across the $\mathrm{U}-L_{3}$ edge ($\approx 17.21 \mathrm{keV}$) at the 6-ID-B beamline of the Advanced Photon Source at Argonne National Laboratory. The sample was glued to a Cu holder using GE varnish. The holder was placed inside a Be dome filled with He gas, which in turn was mounted on the cold finger of a He closed cycle cryostat. A six circle diffractometer was used to move through reciprocal space. Measurements were performed using a scintillator point detector with $1 \times 1 \mathrm{~mm}^{2}$ slits. Tetragonal notation with $a=b=4.108 \AA$ and $c=9.514 \AA$ is used throughout the paper.

FIG. 2. The calculated azimuthal dependence of a $(0,0,3)$ reflection of the $L_{3}-E 2$ transition in both $\sigma \pi$ and $\sigma \sigma$ channels for different proposals of multipolar OPs. The incident photon energy is 17.167 keV and the azimuthal angle is defined with respect to the [100] direction. For each proposal, the intensity is normalized by the maximum intensity of its $\sigma \pi$ channel. (a),(b) A_{2+} hexadecapole H_{z}^{α}; (c),(d) A_{2-} dipole J_{z} and ocutpole T_{z}^{α}; (e),(f) B_{1+} quadrupole O_{22} and hexadecapole O_{42}; (g),(h) B_{1-} octupole $T_{x y z}$; (i),(j) B_{2+} quadrupole $O_{x y}$ and hexadecapole H_{z}^{β}; (k),(1) B_{2-} octupole T_{z}^{β}.

III. RESULTS AND DISCUSSION

A. Azimuthal dependence for different multipolar order parameters

In REXS experiments, azimuthal measurements are used to identify the symmetry of the underlying OPs. Although Nagao et al. [43] have figured out the analytic formula of the azimuthal dependences for $E 2$ transition, we still explicitly calculate and plot the azimuthal dependences to show the symmetry difference for different multipolar OPs. The results for a $(0,0,3)$ reflection are plotted in Fig. 2. For each multipolar OP , both $\sigma \pi$ and $\sigma \sigma$ channels are plotted, and their intensity is normalized by the maximum of the $\sigma \pi$ channel. Figures 2(a) and 2(b) plot the results of the A_{2+} hexadecapole H_{z}^{α}. It shows an eightfold symmetry with a $\pi / 8$ phase shift between the $\sigma \pi$ and $\sigma \sigma$ channels. The peak intensity of the $\sigma \sigma$ channel is about two orders of magnitude larger than that of the $\sigma \pi$ channel. The eightfold symmetry is a characteristic of this H_{z}^{α} hexadecapolar OP. Figures 2(c) and 2(d) show the results of the A_{2-} dipole J_{z} and octupole T_{z}^{α}. It shows a nonzero constant in the $\sigma \pi$ channel and no signal in the $\sigma \sigma$ channel. Figures 2(e) and 2(f) display the results of the B_{1+} quadrupole O_{22} and hexadecapole O_{42}. It shows a $d_{x y}$ wave pattern in the $\sigma \pi$ channel and $d_{x^{2}-y^{2}}$ wave pattern in the $\sigma \sigma$ channel. In Figures 2(g) and 2(h) the results of the B_{1-} octupole $T_{x y z}$
shows a $d_{x y}$ wave pattern in the $\sigma \pi$ channel and no signal in the $\sigma \sigma$ channel. Figures 2(i) and 2(j) plot the results of the B_{2+} quadrupole $O_{x y}$ and hexadecapole H_{z}^{β} exhibiting a $d_{x^{2}-y^{2}}$ wave pattern in the $\sigma \pi$ channel and a $d_{x y}$ pattern in the $\sigma \sigma$ channel. Finally, the results of the B_{2-} octupole T_{z}^{β} are shown in Figs. 2(k) and 2(1) where a $d_{x^{2}-y^{2}}$ wave pattern is seen in the $\sigma \pi$ channel and nothing is seen in the $\sigma \sigma$ channel. In general, we find that there are no signals in the $\sigma \sigma$ channel for time-reversal broken OPs. The azimuthal dependence shows different symmetries for different multipoles, so it can be used to distinguish multipolar OPs.

B. REXS results

The body-centered tetragonal structure of $\mathrm{URu}_{2} \mathrm{Si}_{2}$ forbids Bragg peaks with $H+K+L=2 n+1$. We infer that the HO state breaks the body-centered symmetry by creating inequivalent U sites, thus allowing Bragg peaks at these once forbidden positions. We performed an extensive search for HO Bragg peaks along the $(0,0, L)$ and $(1,0, L)$ directions; results for the former are displayed in Fig. 3. Broad peaks are observed at $(0,0,2 n+1)$. However, these peaks persist through the phase transition at $T_{H O}$, strongly suggesting that these are not related to the HO phase. Additionally, no resonance enhancement is observed across the $\mathrm{U}-L_{3}$ edge. This suggests

FIG. 3. (a) X-ray diffraction L dependence measured along the ($0,0, L$) direction using 17.215 keV and $\varphi=1.2^{\circ}$. (b) Energy dependence of $(0,0,13)$ and $(0,0,15)$ Bragg peaks together with the $\mathrm{U}-L_{3}$ edge XANES. (c) Temperature dependence of $(0,0,15)$ Bragg peak.
that the HO is not accessible through the $E 1$ or $E 2$ transitions using experiments of this type. These results are consistent with former studies [40,41] in which no quadrupolar OPs are found. However, we still cannot exclude the possibility of octupole and hexadecapole due to the weak signal of the E2 transition.

Despite our negative result in the search for the HO, additional experiments are needed to definitely prove the existence (or absence) of the octupole or hexadecapole OPs. Designing experimental techniques to enhance the sensitivity to the $E 2$ transition at the $\mathrm{U}-L_{3}$ edge is needed to observe higher rank multipoles. One such technique is the Borrmann spectroscopy [50,51]. The Borrmann effect refers to the anomalous transmission of x rays through very perfect singlecrystal slabs when they are in symmetric Laue diffraction condition [50]. This effect can be interpreted by the theory of dynamical diffraction of x rays [50]. It is a consequence of multiple coherent interference of the incident and diffracted beams which produces a total electric field with almost zero amplitude but largely enhanced gradient at the crystal planes. The dipolar transition is thus suppressed because it is proportional to the amplitude of the electric field and, on the contrary, the quadrupolar transition will be largely enhanced because it is proportional to the gradient of the electric field. Therefore, we may have a chance to detect a strong quadrupolar signal, for example, at the $\mathrm{U}-L_{3}$ edge. In Ref. [51], Pettifer
et al. indeed observed a very strong quadrupolar peak in the absorption spectrum at the L_{1}, L_{2}, and L_{3} edges of gadolinium in a $4 f$ compound gadolinium gallium garnet. However, no results of $5 f$ compounds have been reported, so it is worth it to try in $5 f$ compounds, such as $\mathrm{URu}_{2} \mathrm{Si}_{2}$. Borrmann spectroscopy requires samples that are much thicker than the nominal x-ray penetration depth and sufficiently perfect that at least some x rays can transmit through the sample without encountering defects, which may be a challenge for sample growth.

Polarization analysis of the outgoing x rays can also be advantageous (despite the strong reduction in x -ray throughput that it imposes) because, as we will demonstrate, the HO Bragg peak should be observed in the $\sigma \pi$ channel. Additionally, identifying the energy and cross section of the $L_{3}-E 2$ transition will greatly facilitate the search for superlattice peaks.

C. Intensity estimation of the $\boldsymbol{L}_{\mathbf{3}}-\boldsymbol{E} 2$ transition

We further justify the negative experimental results by estimating the intensity of the $L_{3}-E 2$ transition. Usually, the intensity of the $E 2$ transition will be much weaker than that of the $E 1$ transition. This is mainly caused by the very small overlap integral of r^{2} between the core hole and valence orbitals. Thus, it is critical to give an estimation of the relative intensity of the $L_{3}-E 2$ transition compared with known experiments which have strong intensity, such as the $M_{4}-E 1$ transition. Roughly, the relative intensity between $L_{3}-E 2$ and $M_{4}-E 1$ is

$$
\begin{equation*}
\frac{I\left(L_{3}-E 2\right)}{I\left(M_{4}-E 1\right)} \propto\left(\frac{k}{3} \frac{\omega_{L_{3}}}{\omega_{M_{4}}} \frac{\langle 2 p| r^{2}|5 f\rangle}{\langle 3 d| r|5 f\rangle}\right)^{4}\left(\frac{\Gamma_{M_{4}}}{\Gamma_{L_{3}}}\right)^{2} \tag{32}
\end{equation*}
$$

and that between $L_{3}-E 2$ and $L_{3}-E 1$ is

$$
\begin{equation*}
\frac{I\left(L_{3}-E 2\right)}{I\left(L_{3}-E 1\right)} \propto\left(\frac{k}{3} \frac{\langle 2 p| r^{2}|5 f\rangle}{\langle 2 p| r|6 d\rangle}\right)^{4} \tag{33}
\end{equation*}
$$

where $\omega_{L_{3}}$ and $\omega_{M_{4}}$ are the x-ray frequency of the L_{3} and M_{4} edges, and their ratio is about 4.6. Based on the HF calculations, the overlap integral ratios are $\langle 2 p| r^{2}|5 f\rangle /\langle 3 d| r|5 f\rangle \approx 0.013$ and $\langle 2 p| r^{2}|5 f\rangle /$ $\langle 2 p| r|6 d\rangle \approx 0.2$, respectively. $\Gamma_{M_{4}}$ and $\Gamma_{L_{3}}$ are the core-hole lifetime widths for the M_{4} and L_{3} edges, respectively, and their ratio is $\Gamma_{M_{4}} / \Gamma_{L_{3}} \approx 0.4$. For the L_{3} edge, $k / 3 \approx 2.9$. Thus, the intensity of $L_{3}-E 2$ is about 10^{-4} times smaller than that of $M_{4}-E 1$ and 10^{-1} times smaller than that of $L_{3}-E 1$. Here, we should note that $6 d$ orbitals are much broader in $\mathrm{URu}_{2} \mathrm{Si}_{2}$, which will lead to larger overlap integrals than those based on the atomic $6 d$ orbitals, so $L_{3}-E 2$ is not just one order of magnitude smaller than that of $L_{3}-E 1$. We may expect larger overlap integrals for the $M_{3}-E 2\left(3 p_{3 / 2} \rightarrow 5 f\right)$ transition, so we also calculate the relative intensity between $M_{3}-E 2$ and $M_{4}-E 1$. The results show that the intensity of $M_{3}-E 2$ is also about 10^{-4} times smaller than that of $M_{4}-E 1$. The reason is that, although the calculated overlap integral $\langle 3 p| r^{2}|5 f\rangle$ is about 14 times larger than that of $\langle 2 p| r^{2}|5 f\rangle$, both the x-ray frequency and wave vector of the M_{3} edge are about 0.25 times

FIG. 4. ($0,0,3$) REXS intensity as a function of incident photon energy and polarization. The incoming light is linearly polarized and the polarization of the outgoing light is not analyzed. We compare the results of the $M_{4}-E 1$ transition with the $L_{3}-E 2$ transition and the $L_{3}-(E 1+E 2)$ transition. We consider different ordering schemes: (a)-(c) Antiferrodipole J_{z} and antiferro-octupole T_{z}^{α} at $\varphi=0$. (d)-(f) Antiferroquadrupole $O_{x y}$ and antiferrohexadecapole H_{z}^{β} at $\varphi=0$. (g)-(i) Antiferroquadrupole $O_{x y}$ and antiferrohexadecapole H_{z}^{β} at $\varphi=\frac{\pi}{4}$. (j) Antiferro-octupole T_{z}^{β} at $\varphi=0$. (k) Antiferrohexadecapole H_{z}^{α} at $\varphi=0$. (l) Antiferrohexadecapole H_{z}^{α} at $\varphi=\pi / 8$.
smaller than that of the L_{3} edge; as a result, the enhancement effect from the larger overlap integral is canceled out. The intensity of $M_{3}-E 2$ is not stronger than that of $L_{3}-E 2$.

However, this rough estimation does not consider many details of the scattering process, such as the ground state and the intermediate excited states, the interference effects of intermediate states, the smearing effect of core-hole lifetime width, and the geometry of the experimental setup. To give a better estimation, we exactly diagonalize the atomic ground
and excited Hamiltonians to get the eigenstates and the transition matrix, and then we choose different ground states and experimental geometries to calculate the cross section according to Eqs. (1) and (2).

The calculated results of a $(0,0,3)$ reflection are shown in Fig. 4. The azimuthal angle φ is defined with respect to the [100] direction and the polarization of outgoing light is not analyzed. We plot both the σ and π polarizations of the incident light. The difference of energy levels between $6 d$ and $5 f$ is
set to be 10 eV . We assume a type-I antiferromultipolar order with $Q_{A F}=(0,0,1)$ in the simulation. Figures 4(a)-4(c) are the results for the ground state [Eq. (29)] that induces A_{2-} orders: dipole J_{z} and octupole T_{z}^{α}. The $E 1$ transition can only detect J_{z} but $E 2$ can detect both of them. The azimuthal angle is set to be $\varphi=0$. For this ground state, the intensity of $L_{3}-E 2$ is about 10^{-6} times smaller than that of $M_{4}-E 1$. However, the intensity of $L_{3}-E 2$ is almost the same order of magnitude as that of the $L_{3}-E 1$ transition. In Fig. 4(c), the left peak is from the $E 2$ transition and the right peak is from the $E 1$ transition. Figures 4(d)-4(i) plot the results for the ground state [Eq. (31)] that induces B_{2+} order: quadrupole $O_{x y}$ and hexadecapole H_{z}^{β}. In Figs. 4(d)-4(f) the azimuthal angle is $\varphi=0$. We find that the intensity of the $L_{3}-E 2$ transition is 10^{-5} times smaller than that of the $M_{4}-E 1$ transition and has the same order of magnitude as that of $L_{3}-E 1$. In Figs. $4(\mathrm{~g})-4(\mathrm{i})$, the azimuthal angle is set to be $\varphi=\pi / 4$. For σ polarization, the intensity of $L_{3}-E 2$ is about 10^{-9} times smaller than that of $M_{4}-E 1$ and 10^{-5} smaller than that of $L_{3}-E 1$. However, for π polarization, it is only 10^{-5} times smaller than that of $M_{4}-E 1$ and much larger than that of $L_{3}-E 1$ so that there is only an $E 2$ peak. Figure $4(\mathrm{j})$ is the result for the ground state [Eq. (31)] that induces B_{2-} octupolar order T_{z}^{β}. The intensity is at least eight orders of magnitude smaller than that of $M_{4}-E 1$. Another B_{1-} octupole $T_{x y z}$ has the same order of magnitude as that of T_{z}^{β}. Figures $4(\mathrm{k})$ and 4(1) are the results for the ground state [Eq. (29)] that induces the A_{2+} hexadecapolar order H_{z}^{α}. For $\varphi=0$, both σ and π polarizations are at least seven orders of magnitude smaller than that of $M_{4}-E 1$. For $\varphi=\pi / 8, \sigma$ polarization is about five orders of magnitude smaller than that of $M_{4}-E 1$. We emphasize that the atomic calculation underestimates the intensity of the $L_{3}-E 1$ transition due to the itinerant character of $6 d$ orbitals, so the intensity of $L_{3}-E 1$ should be much larger than that of $L_{3}-E 2$ in reality.

Based on these atomic results, we find that there are many factors that will affect the REXS cross section, such as the interference of the intermediate states, the interference effect of core-hole lifetime width, the experimental geometry, and the details of the ground states. Overall, the intensity of the $L_{3}-E 2$ transition is at least five or six orders of magnitude smaller than that of $M_{4}-E 1$, so the signal of the $L_{3}-E 2$ transition is indeed very weak compared with $M_{4}-E 1$. We also note that the $5 f$ electrons are not completely localized and they have partial itinerant character in $\mathrm{URu}_{2} \mathrm{Si}_{2}$, which leads to the importance of the band effects in the REXS cross section. To account for these effects, the combination of more advanced first-principle calculations, such as density functional theory plus dynamical mean-field theory (DFT+DMFT), with REXS cross-section calculations is needed. Despite this, the simple atomic simulations still give us preliminary estimations about the strength of the $E 2$ transition.

To further confirm the weakness of the $L_{3}-E 2$ signal, we estimate the flux of the scattered photons by calculating the absolute value of the cross section. For a typical flux of $10^{11} \mathrm{ph} / \mathrm{s} / 100 \mathrm{meV} /\left(100 \times 100 \mu \mathrm{~m}^{2}\right)$, a rough upper bound of the flux of scattered photons is $10^{4} \mathrm{ph} / \mathrm{s} / \mathrm{eV} / \mathrm{rad}$ for the $M_{4}-E 1$ transition, while it is $10^{-1}-10^{-2} \mathrm{ph} / \mathrm{s} / \mathrm{eV} / \mathrm{rad}$ for the $L_{3}-E 2$ transition. This makes it very difficult to detect in experiments, which is consistent with the experimental results.

TABLE I. Slater integrals and spin-orbit coupling parameters for ground configuration $5 f^{2}$ (in eV).

$F_{f f}^{0}$	$F_{f f}^{2}$	$F_{f f}^{4}$	$F_{f f}^{6}$	$\zeta_{5 f}$
0.291	7.611	4.979	3.655	0.261

IV. SUMMARY

In summary, we have studied the possibility to detect multipolar OPs in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ by REXS in the $\mathrm{U} L_{3}-E 2$ transition channel. The REXS experiments do not find any clear signal indicating multipolar OPs. An estimation based on atomic calculations indicates that the intensity of the $L_{3}-E 2$ transition is indeed much smaller than that of the $M_{4}-E 1$ transition and the flux of the scattered photons is too small such that it is very difficult to detect the $E 2$ signal. It seems that it is still not practical to use the $E 2$ transition of currently available REXS experiments to detect the multipolar OPs. Developing experimental techniques to enhance the $E 2$ signal is urgently needed to identify the multipolar OPs not only in $\mathrm{URu}_{2} \mathrm{Si}_{2}$ but also in other compounds, such as $\mathrm{UO}_{2}, \mathrm{NpO}_{2}$, and $\mathrm{Ce}_{1-x} \mathrm{La}_{x} \mathrm{~B}_{6}$ [52].

ACKNOWLEDGMENTS

We thank Frank de Groot for valuable discussions. This work was supported by the US Department of energy, Office of Science, Basic Energy Sciences as a part of the Computational Materials Science Program through the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy. G.F. and D.M. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC00112704, and Early Career Award Program under Award No. 1047478. X.L. is supported by MOST (Grant No. 2015CB921302) and CAS (Grant No. XDB07020200). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

APPENDIX: SLATER INTEGRALS AND SPIN-ORBIT COUPLING PARAMETERS

We list the Slater integrals and spin-orbit coupling parameters used in our calculations in Tables I-IV.

TABLE II. Slater integrals and spin-orbit coupling parameters for excited configuration $2 p^{5} 5 f^{3}$ (in eV).

$F_{f f}^{0}$	$F_{f f}^{2}$	$F_{f f}^{4}$	$F_{f f}^{6}$	$F_{p f}^{0}$	$F_{p f}^{2}$	$G_{p f}^{2}$	$G_{p f}^{4}$
0.306	7.984	5.232	3.845	0.005	0.497	0.082	0.053
$\zeta_{5 f}$	$\zeta_{2 p}$						
0.302	2517.292						

TABLE III. Slater integrals and spin-orbit coupling parameters for excited configuration $2 p^{5} 5 f^{2} 6 d^{1}$ (in eV).

$F_{f f}^{0}$	$F_{f f}^{2}$	$F_{f f}^{4}$	$F_{f f}^{6}$	$F_{p f}^{0}$	$F_{p f}^{2}$	$G_{p f}^{2}$	$G_{p f}^{4}$
0.307	8.278	5.447	4.011	0.102	0.528	0.087	0.056
$F_{p d}^{0}$	$F_{p d}^{2}$	$G_{p d}^{1}$	$G_{p d}^{3}$	$F_{f d}^{0}$	$F_{f d}^{2}$	$F_{f d}^{4}$	$G_{f d}^{1}$
0.022	0.272	0.238	0.142	0.139	3.750	2.050	1.938
$G_{f d}^{3}$	$G_{f d}^{5}$	$\zeta_{5 f}$	$\zeta_{6 d}$	$\zeta_{2 p}$			
1.562	1.213	0.321	0.435	2517.236			

TABLE IV. Slater integrals and spin-orbit coupling parameters for excited configuration $3 d^{5} 5 f^{3}$ (in eV).

$F_{f f}^{0}$	$F_{f f}^{2}$	$F_{f f}^{4}$	$F_{f f}^{6}$	$F_{d f}^{0}$	$F_{d f}^{2}$	$F_{d f}^{4}$
0.307	8.020	5.258	3.865	0.102	2.051	0.952
$G_{d f}^{1}$	$G_{d f}^{3}$	$G_{d f}^{5}$	$\zeta_{5 f}$	$\zeta_{3 d}$		
1.602	0.969	0.678	0.301	70.449		

[1] T. T. M. Palstra, A. A. Menovsky, J. van den Berg, A. J. Dirkmaat, P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. Lett. 55, 2727 (1985).
[2] C. Broholm, J. K. Kjems, W. J. L. Buyers, P. Matthews, T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh, Phys. Rev. Lett. 58, 1467 (1987).
[3] C. Broholm, H. Lin, P. T. Matthews, T. E. Mason, W. J. L. Buyers, M. F. Collins, A. A. Menovsky, J. A. Mydosh, and J. K. Kjems, Phys. Rev. B 43, 12809 (1991).
[4] D. E. MacLaughlin, D. W. Cooke, R. H. Heffner, R. L. Hutson, M. W. McElfresh, M. E. Schillaci, H. D. Rempp, J. L. Smith, J. O. Willis, E. Zirngiebl, C. Boekema, R. L. Lichti, and J. Oostens, Phys. Rev. B 37, 3153 (1988).
[5] H. Amitsuka, K. Matsuda, I. Kawasaki, K. Tenya, M. Yokoyama, C. Sekine, N. Tateiwa, T. Kobayashi, S. Kawarazaki, and H. Yoshizawa, J. Magn. Magn. Mater. 310, 214 (2007).
[6] H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K. Kuwahara, T. Sakakibara, H. Morimoto, S. Kawarazaki, Y. Miyako, and J. A. Mydosh, Phys. Rev. Lett. 83, 5114 (1999).
[7] N. P. Butch, J. R. Jeffries, S. Chi, J. B. Leão, J. W. Lynn, and M. B. Maple, Phys. Rev. B 82, 060408 (2010).
[8] P. Santini and G. Amoretti, Phys. Rev. Lett. 73, 1027 (1994).
[9] P. Santini, Phys. Rev. B 57, 5191 (1998).
[10] F. J. Ohkawa and H. Shimizu, J. Phys.: Condens. Matter 11, L519 (1999).
[11] P. Santini, G. Amoretti, R. Caciuffo, F. Bourdarot, and B. Fåk, Phys. Rev. Lett. 85, 654 (2000).
[12] A. Kiss and P. Fazekas, Phys. Rev. B 71, 054415 (2005).
[13] K. Hanzawa, J. Phys.: Condens. Matter 19, 072202 (2007).
[14] K. Haule and G. Kotliar, Nat. Phys. 5, 796 (2009).
[15] F. Cricchio, F. Bultmark, O. Grånäs, and L. Nordström, Phys. Rev. Lett. 103, 107202 (2009).
[16] H. Harima, K. Miyake, and J. Flouquet, J. Phys. Soc. Jpn. 79, 033705 (2010).
[17] H. Kusunose and H. Harima, J. Phys. Soc. Jpn. 80, 084702 (2011).
[18] H. Ikeda, M. Suzuki, R. Arita, T. Takimoto, T. Shibauchi, and Y. Matsuda, Nat. Phys. 8, 528 (2012).
[19] M. B. Maple, J. W. Chen, Y. Dalichaouch, T. Kohara, C. Rossel, M. S. Torikachvili, M. W. McElfresh, and J. D. Thompson, Phys. Rev. Lett. 56, 185 (1986).
[20] H. Ikeda and Y. Ohashi, Phys. Rev. Lett. 81, 3723 (1998).
[21] V. P. Mineev and M. E. Zhitomirsky, Phys. Rev. B 72, 014432 (2005).
[22] J. G. Rau and H.-Y. Kee, Phys. Rev. B 85, 245112 (2012).
[23] L. P. Gor'kov and A. Sokol, Phys. Rev. Lett. 69, 2586 (1992).
[24] P. Chandra, P. Coleman, J. A. Mydosh, and V. Tripathi, Nature (London) 417, 831 (2002).
[25] C. M. Varma and L. Zhu, Phys. Rev. Lett. 96, 036405 (2006).
[26] S. Elgazzar, J. Rusz, M. Amft, P. M. Oppeneer, and J. A. Mydosh, Nat. Mater. 8, 337 (2009).
[27] S. Fujimoto, Phys. Rev. Lett. 106, 196407 (2011).
[28] Y. Dubi and A. V. Balatsky, Phys. Rev. Lett. 106, 086401 (2011).
[29] P. Chandra, P. Coleman, and R. Flint, Nature (London) 493, 621 (2013).
[30] P. Chandra, P. Coleman, and R. Flint, Phys. Rev. B 91, 205103 (2015).
[31] J. A. Mydosh and P. M. Oppeneer, Rev. Mod. Phys. 83, 1301 (2011).
[32] J. Mydosh and P. Oppeneer, Philos. Mag. 94, 3642 (2014).
[33] J. Buhot, M.-A. Méasson, Y. Gallais, M. Cazayous, A. Sacuto, G. Lapertot, and D. Aoki, Phys. Rev. Lett. 113, 266405 (2014).
[34] H.-H. Kung, R. E. Baumbach, E. D. Bauer, V. K. Thorsmølle, W.-L. Zhang, K. Haule, J. A. Mydosh, and G. Blumberg, Science 347, 1339 (2015).
[35] H.-H. Kung, S. Ran, N. Kanchanavatee, V. Krapivin, A. Lee, J. A. Mydosh, K. Haule, M. B. Maple, and G. Blumberg, Phys. Rev. Lett. 117, 227601 (2016).
[36] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).
[37] T. Matsumura, H. Nakao, and Y. Murakami, J. Phys. Soc. Jpn. 82, 021007 (2013).
[38] E. D. Isaacs, D. B. McWhan, R. N. Kleiman, D. J. Bishop, G. E. Ice, P. Zschack, B. D. Gaulin, T. E. Mason, J. D. Garrett, and W. J. L. Buyers, Phys. Rev. Lett. 65, 3185 (1990).
[39] T. Nagao and J.-i. Igarashi, J. Phys. Soc. Jpn. 74, 765 (2005).
[40] H. Amitsuka, T. Inami, M. Yokoyama, S. Takayama, Y. Ikeda, I. Kawasaki, Y. Homma, H. Hidaka, and T. Yanagisawa, J. Phys.: Conf. Ser. 200, 012007 (2010).
[41] H. C. Walker, R. Caciuffo, D. Aoki, F. Bourdarot, G. H. Lander, and J. Flouquet, Phys. Rev. B 83, 193102 (2011).
[42] R. D. dos Reis, L. S. I. Veiga, D. Haskel, J. C. Lang, Y. Joly, F. G. Gandra, and N. M. Souza-Neto, arXiv:1601.02443 (2016).
[43] T. Nagao and J.-i. Igarashi, Phys. Rev. B 74, 104404 (2006).
[44] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981).
[45] P. H. Butler, Point Group Symmetry Applications: Methods and Tables (Plenum, New York, 1981).
[46] F. D. Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, FL, 2008).
[47] E. Stavitski and F. M. de Groot, Micron 41, 687 (2010).
[48] M. Sundermann, M. W. Haverkort, S. Agrestini, A. Al-Zein, M. Moretti Sala, Y. Huang, M. Golden, A. de Visser, P. Thalmeier, L. H. Tjeng, and A. Severing, Proc. Natl. Acad. Sci. USA 113, 13989 (2016).
[49] T. D. Matsuda, D. Aoki, S. Ikeda, E. Yamamoto, Y. Haga, H. Ohkuni, R. Settai, and Y. Onuki, J. Phys. Soc. Jpn. 77, 362 (2008).
[50] B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[51] R. F. Pettifer, S. P. Collins, and D. Laundy, Nature (London) 454, 196 (2008).
[52] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).

