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Magnetic interactions are thought to play a key role in the properties of many unconventional superconductors,
including cuprates, iron pnictides, and square-planar nickelates. Superconductivity was also recently observed in
the bilayer and trilayer Ruddlesden-Popper nickelates, the electronic structure of which is expected to differ from
that of cuprates and square-planar nickelates. Here we study how electronic structure and magnetic interactions
evolve with the number of layers, n, in thin film Ruddlesden-Popper nickelates Ndn+1NinO3n+1 with n = 1, 3,
and 5 using resonant inelastic x-ray scattering (RIXS). The RIXS spectra are consistent with a high-spin |3d8L〉
electronic configuration, resembling that of La2−xSrxNiO4 and the parent perovskite, NdNiO3. The magnetic
excitations soften to lower energy in the structurally self-doped, higher-n films. Our observations confirm that
structural tuning is an effective route for altering electronic properties, such as magnetic superexchange, in this
prominent family of materials.

DOI: 10.1103/PhysRevB.111.165145

I. INTRODUCTION

While much remains unknown about unconventional su-
perconductivity, strong magnetic superexchange and reduced
dimensionality likely play important roles in achieving
high superconducting transition temperatures [1–3]. The
square-planar family of nickelates, including the infinite-
layer RNiO2 (R = La, Pr, Nd) and the quintuple-layer
Nd6Ni5O12, fits nicely into this picture in many ways, fea-
turing two-dimensional transition-metal oxide planes and a
d9−δ electronic configuration [4–6]. High energy magnetic
excitations are observed throughout the nickelate phase dia-
gram [7–13], although much lower critical temperatures are
found in the square-planar nickelates than in cuprates. Com-
paring these two seemingly similar families of materials can
help uncover the origins of superconductivity and identify
new strategies to optimize superconductivity.

Recently, superconductivity was also observed in bilayer
and trilayer Ruddlesden-Popper nickelates R3Ni2O7 (n = 2)
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and R4Ni3O10 (n = 3) for R = La, Pr, under pressure [14–21],
or epitaxial strain [22–25]. This discovery has expanded the
variety of superconducting nickelates beyond the square-
planar geometry [4–6], to octahedrally coordinated nickelates
and to substantially higher critical temperatures [14,15].
More generally, the layered Ruddlesden-Popper nickelates,
Rn+1NinO3n+1, provide a way to explore the nickelate phase
diagram through structural tuning. As shown in Fig. 1, the
Ruddlesden-Popper structure consists of n layers of perovskite
RNiO3 separated by (R-O)+ charged rock-salt layers. In-
creasing n tunes the effective electron count of the NiO2

planes by 1/n per nickel, from a d8 configuration in the
R2NiO4 (n = 1) compound to a nominal d7 configuration
in the RNiO3 (n = ∞) compound, tuning the electronic be-
havior from semiconducting to metallic (see Supplemental
Material, Sec. S1 C [26]) while in principle avoiding the
disorder associated with chemical doping. This positions the
layered Ruddlesden-Popper nickelates as a promising material
family for exploring and tuning the superconducting ground
state.

Although these materials share the layered perovskite
structure common to many cuprates, it is unclear whether
they fit into the same “cuprate-like” picture which may be
relevant to the square-planar nickelates [27–32]. The square-
planar nickelates adopt a d9−1/n configuration, with domi-
nant in-plane orbital polarization [33]. The key electronic
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FIG. 1. Structures of Ruddlesden-Popper Ndn+1NinO3n+1 nicke-
lates for n = 1, 3, and 5. The unit cell hosts n NdNiO3 perovskite
layers separated by NdO+ rock-salt spacer layers. As n varies, the
nominal Ni valence changes as d7+1/n.

interactions in the octahedrally coordinated Ruddlesden-
Popper nickelates may differ substantially from the square-
planar nickelates, as Ruddlesden-Popper nickelates have a
nominal d7+1/n configuration, with holes occupying both the
in-plane 3dx2−y2 and out-of-plane 3d3z2−r2 orbitals [34–36].
The character of the doped holes may also differ: while
undoped n = 1 cuprates and nickelates are both antiferromag-
netic insulators, lightly hole-doped cuprates quickly become
metallic and a superconducting dome emerges [2]. Magnetic
excitations are broadened due to increased metallicity, but re-
main at high energy [37]. In contrast, doped n = 1 nickelates
do not exhibit superconductivity, but instead display a wide
array of insulating stripe phases [38–42]. Holes and spins are
bound via electron-electron and electron-phonon couplings,
forming polarons [43]. This localizes spins in the lattice,
resulting in a dramatic softening of the magnetic excitations
with hole doping [44,45].

Structural tuning across the Ruddlesden-Popper nickelate
series offers access to a distinct subspace of material phases
and may help identify properties that are inaccessible by
doping alone. Here we study how electronic and magnetic
interactions evolve with layer number n, performing high-
resolution inelastic x-ray scattering (RIXS) measurements on
Ndn+1NinO3n+1 thin films for n = 1, 3, and 5. Orbital excita-
tions reveal the expected |d8〉 orbital configuration in the n =
1 compound. Upon increasing n, these features evolve towards
a |d8L〉 configuration, indicating holes are primarily added
to the ligand bands rather than inducing a |d7〉 state. Mag-
netic excitations with an energy scale of order 50–70 meV
are prominent throughout the entire family of materials, with
softening at higher n due to increased doping. The observed
softening is smaller than that expected based on effective dop-
ing alone, as dimensionality effects from increasing n partially
offset the doping-induced softening. Our observations demon-
strate that the Ruddlesden-Popper nickelates share many
key features with other perovskite nickelates, with structural
tuning providing an effective and unique approach to modify
electronic and magnetic properties.

II. EXPERIMENTAL METHODS

RIXS has proven effective in determining the properties of
nickelates [30,46]. We applied this technique to thin films of
the n = 1, 3, and 5 layer Ruddlesden-Popper Ndn+1NinO3n+1

compounds, taken at the Ni L3 edge and with π -polarized
light in order to maximize the magnetic signal. RIXS mea-
surements for the n = 1 and 3 compounds were performed at
the National Synchrotron Light Source II beamline 2-ID [47]
at a temperature of 35 K, at a scattering angle of 2θ = 150◦,
and with an experimental resolution of 31 meV. Measure-
ments for the n = 5 compound were performed at Diamond
Light Source beamline ID21 [48] at a temperature of 20 K,
at a scattering angle of 2θ = 154◦, and with an experimental
resolution of 36 meV. To probe the dispersion of magnetic
excitations, the scattering angle 2θ was kept fixed while the
sample angle θ was rotated to control the in-plane momen-
tum transfer to the sample, along the [H, 0, L] direction of
the pseudotetragonal unit cell. In order to compare spectra
collected from different samples and at different beamlines,
we present spectra normalized to the integrated intensity of
the orbital excitations [49].

Ndn+1NinO3n+1 films were synthesized using oxide
molecular-beam epitaxy as described in Refs. [50,51]. All
films are epitaxially strained to the substrate. We fo-
cus on samples synthesized on (110)-oriented NdGaO3,
which has a pseudoperovskite lattice constant of 3.86 Å
and thus provides a small amount of tensile strain, ε ≈
+1.0%, to the Ruddlesden-Popper nickelate family [52].
Additional data for Nd6Ni5O16 on (001)-oriented LaAlO3

(ε ≈ −0.9%) are shown in the Supplemental Material,
Sec. S4 [26]. Structural and electrical sample characteri-
zation is detailed in the Supplemental Material, Sec. S1.
By studying compounds where the rare-earth site is oc-
cupied by neodymium rather than the more commonly
studied lanthanum series, we avoid contamination on Ni
L3-edge RIXS from the nearby La M4 absorption edge.
We also emphasize that thin film techniques provide unique
access to higher-n Ruddlesden-Popper phases, as only com-
pounds up to n = 3 can be synthesized in bulk [53].

III. ORBITAL EXCITATIONS AND HOLE
CONFIGURATION

To study the electronic structure of Ndn+1NinO3n+1 we
examine the orbital excitations observed in RIXS spectra,
shown in Fig. 2 for films with n = 1, 3, and 5. In Nd2NiO4

(n = 1, 3d8) we observe two sharp orbital excitations at 1.04
and 1.6 eV, in good agreement with published RIXS data
on bulk La2NiO4 [44]. In Nd4Ni3O10 (n = 3, nominal d7.33)
in Nd6Ni5O16 (n = 5, nominal d7.2), the orbital excitations
broaden in energy but remain centered at similar energies.

La2NiO4 is known to adopt a Ni 3d8 high-spin configu-
ration in which the two holes reside in the Ni 3d eg orbitals
and have parallel spin due to the Hund’s exchange interac-
tion (Fig. 2). The orbital excitations were previously shown
to be well captured by excitations from this atomic con-
figuration [44] and agree with the excitations we observe
in Nd2NiO4 (n = 1). The lower energy orbital excitation at
1.04 eV is attributed to a transition from the B1g symmetric

165145-2



MAGNETIC EXCITATIONS IN … PHYSICAL REVIEW B 111, 165145 (2025)

FIG. 2. RIXS spectra of Ruddlesden-Popper nickelates for n = 1
(orange), 3 (dark pink), and 5 (purple). The majority of the spectral
weight observed around ≈ 1 eV and above corresponds to orbital
excitations. Spectra are collected at q = (−0.4, 0) reciprocal lattice
units (θ = 24◦) with π -incident polarization, probing primarily out-
of-plane orbitals. Data for n = 1 and 3 were collected at 35 K, while
data for n = 5 were collected at 20 K. The inset depicts the ground
state orbital configuration for n = 1.

ground state to an Eg symmetric state with one of the holes
moving into the t2g orbitals. The higher energy peak at 1.6 eV
is composed of an A1g excitation from an S = 1 to 0 configura-
tion, a B2g excitation with one of the holes transferred to the t2g

manifold, and two A2g excitations, one with a single hole in the
t2g manifold and one with both holes in the t2g manifold [44].
Thus the orbital excitations in Nd2NiO4 (n = 1) can be well
captured as excitations of the local d multiple.

As n is increased, additional holes are doped into the
perovskite layers, modifying the ground state and the orbital
excitations. In Nd4Ni3O10 (n = 3) the Ni sites have a nominal
d7.33 valence and in Nd6Ni5O16 (n = 5) the Ni sites have
a nominal d7.2 valence. Nonetheless, the orbital excitations
remain centered at approximately the same energies, and the
polarization dependence indicates that holes remain roughly
equally distributed between the in-plane and out-of-plane Ni
eg orbitals (see Supplemental Material, Fig. S6 [26]). The
orbital excitations broaden such that the two features can no
longer be separately resolved, but remain centered at similar
energies.

The broadenings of the orbital excitations in Nd4Ni3O10

(n = 3) and Nd6Ni5O16 (n = 5) are indicative of a d8L state
rather than a d7 state, sharing a striking similarity to the or-
bital excitations observed in hole-doped La2−xSrxNiO4 (n =
1) [44] and metallic NdNiO3 (n = ∞) [54,55], materials both
known to adopt a d8L configuration. In addition to hole
doping, possible small variations in the crystal field environ-
ment between inequivalent Ni layers in Nd4Ni3O10 (n = 3)
and Nd6Ni5O16 (n = 5) could additionally contribute to the
observed broadening of the d8 orbital excitations, with each
inequivalent layer contributing excitations at slightly different

energies. In contrast, the observed orbital excitations are in-
consistent with a contribution from a d7 configuration—such
a contribution has been calculated in Refs. [44,54] and was
shown to yield additional peaks in the RIXS spectrum outside
the energy range of these main d8 excitations, above 2 eV and
around 0.25 eV respectively.

We believe the spectral changes with increasing n are
driven primarily by changes in the effective doping rather than
changes in hybridization. To leading order, the in-plane envi-
ronment is expected to remain unchanged, as the Ni-O bond
lengths are fixed for all n by the substrate epitaxy. Changes
in the apical Ni-O bonding with increasing n may play a
small role in the observed changes, but would manifest most
strongly in changes to the orbital dichroism, which are not
observed. We therefore consider doping to be the driving force
behind the observed changes, consistent with the strong sim-
ilarity of these data with prior measurements of hole-doped
La2−xSrxNiO4 (n = 1) [44].

In addition to hole doping the perovskite layers, structural
tuning introduces additional interlayer couplings between ad-
jacent Ni planes within each perovskite block, which might
further modify the orbital excitations beyond a single-site
picture. In bulk La3Ni2O7 (n = 2), an additional, Raman-like
orbital excitation was observed at 0.4 eV, which is attributed to
transitions between dx2−y2 and d3z2−r2 orbitals [9]. The energy
of this excitation is primarily determined by the interlayer
hopping, which results in the formation of molecular sub-
bands [56]. If such features occurred in the higher n films
studied here, they would appear at substantially different en-
ergies, with differences of order t [56], which would be easily
resolvable. We do not see evidence of any such additional
peaks in the orbital excitations for Nd4Ni3O10 (n = 3) and
Nd6Ni5O16 (n = 5), which may be because for higher n the
distinct orbital subbands are strongly concentrated on distinct
Ni layers within the perovskite blocks [56], minimizing their
cross section for the highly local RIXS process.

As shown in the Supplemental Material, Fig. S5 [26],
Nd6Ni5O16 (n = 5) and Nd4Ni3O10 (n = 3) exhibit strong
x-ray fluorescence features in which RIXS intensity ap-
pears at increasing energy loss as the incident energy
increases. This is distinct from regular dd excitations that
appear at fixed energy loss independent of incident en-
ergy. These fluorescence features arise from and indicate
the presence of hybridization between transition metal states
and itinerant ligand states [34,35,57]. Similar hybridization
features are commonly observed in cuprates [58] and nick-
elates [30,32,34,35,44,54,57,59,60], including NdNiO3 (n =
∞) [54] and hole-doped La2−xSrxNiO4 (n = 1) [44], under-
scoring the role of hybridized itinerant ligand states as a
unifying feature across these materials.

We also observe featureless, nondispersing spectral weight
in the midinfrared (MIR) region, 0.3–0.7 eV, in the n =
3 and 5 compounds, which is nearly absent in the n =
1 compound (Fig. 2). This energy scale is above that of
magnons and multimagnons. This MIR spectral weight ap-
pears only at the x-ray-absorption spectroscopy resonance
(See Supplemental Material, Fig. S5 [26]), phenomenolog-
ically different from the clear Raman peak at 0.4 eV in
La3Ni2O7 (n = 2) which is attributed to transitions between
dx2−y2 and d3z2−r2 orbitals. Instead, the flat filling in of the
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FIG. 3. RIXS spectra along [H, 0] for π -incident polarization for (a) n = 1, (b) n = 3, and (c) n = 5. The inelastic components of the
RIXS spectra are dominated by magnetic excitations. (d) Linecuts at q = (0.4, 0) for n = 1 (orange), n = 3 (dark pink), and n = 5 (purple)
with the quasielastic scattering shown in gray and the inelastic (magnetic) scattering shown in color. Data for n = 1 and 3 were collected at
35 K, while data for n = 5 were collected at 20 K.

MIR spectral weight appears phenomenologically very simi-
lar to the behavior observed in NdNiO3 (n = ∞) upon heating
through a metal-insulator transition [54], attributed to charge
excitations within the |d8L〉 states and associated with partial
metallicity. This is consistent with the electronic transport
properties of these films: the n = 1 material is semicon-
ducting with an exponentially increasing resistivity in the
low-temperature limit, while the n = 3 and 5 materials, on
the other hand, are metallic at room temperature with mod-
est resistivity upturns at low temperature (see Supplemental
Material, Sec. S1 C [26], as well as Refs. [60–63] therein).

Thus the high energy RIXS features support a |d8L〉 config-
uration for Ruddlesden-Popper nickelates, with mobile holes
doped into hybridized ligand states as n is increased.

IV. MAGNETIC EXCITATIONS MODIFIED BY
STRUCTURE AND DOPING

To study the magnetic excitations in Ndn+1NinO3n+1, we
examine the momentum dependence of the low energy-loss
region of the RIXS spectra along the [H, 0] direction for
films with n = 1, 3, and 5, shown in Fig. 3. RIXS spectra
show an elastic line and a broad inelastic feature extending
out to 0.2 eV. In all three compounds these features are
most prominent around the zone boundary, near (0.4,0), and
disperse to lower intensity and lower energy scales towards
(0,0). This behavior is typical for magnetic branches, so, con-
sistent with prior work [44,64], we assign these features to
damped magnetic excitations. With increasing n, additional
inelastic spectral weight appears approaching the zone center,
q = (0, 0), and extends out to higher energy losses in n = 3
and 5 than in the n = 1 sample.

As shown in Fig. 1, the unit cells of Nd4Ni3O10 (n =
3) and Nd6Ni5O16 (n = 5) include sets of coupled nickel-
oxide trilayers and quintuple layers, so spin wave theory
predicts a large number of distinct spin wave modes (Sup-
plemental Material, Sec. S3 [26]). These modes are split
by the interlayer magnetic exchange coupling, Jz, as has

been observed in the bilayer systems La3Ni2O7 [9] and
Sr3Ir2O7 [65,66]. Due to the large number of modes and
mode-broadening effects arising from finite effective doping,
resolving all the predicted modes individually is unlikely
to be feasible. In fact, previous measurements of the
trilayer square-planar nickelate La4Ni3O8 observed only the
average of the three modes expected based on spin wave
theory [8].

We attribute the enhanced spectral weight around 0.1 eV
near q = (0, 0) in the higher n compounds to a magnetic
branch with partially optical character. The optical spec-
tral weight in Nd4Ni3O10 (n = 3) appears weaker than in
Nd6Ni5O16 (n = 5), which may be due to a reduced im-
portance of interplane interactions in Nd4Ni3O10. Neutron
scattering measurements on bulk La4Ni3O10 indeed reveal a
concentration of spin density in the outer layers of the trilayer
block [67], reducing the magnetic coupling between planes.

Since the individual spin wave modes in the n = 3 and
5 materials cannot be resolved individually, we use a phe-
nomenological model to separate the inelastic features from
the elastic line and compare results for Ndn+1NinO3n+1 com-
pounds with n = 1, 3, and 5. The phenomenological model
includes a pseudo-Voigt peak for the quasielastic scattering,
and an error function for the flat midinfrared background in
the n = 3 and 5 compounds. For n = 1 and 3 compounds we
use a single damped harmonic oscillator function to capture
the remaining inelastic spectral weight. For n = 5 we were
better able to capture the inelastic features by instead using
four pseudo-Voigt peaks, though our results are insensitive to
the exact fitting model used. An example of the total fit is
shown for q = (0.4, 0) in Fig. 3(d). The quasielastic scatter-
ing is indicated in light gray, while the sum of the inelastic
components is indicated by the shaded colored region. The
position of maximum intensity of the inelastic components
is taken as the magnon bandwidth and is indicated by the
arrows. At q = (0.4, 0) the magnetic excitations are peaked
at 65 meV in Nd2NiO4 (n = 1) and soften to 51 and 50 meV
in Nd4Ni3O10 (n = 3) and Nd6Ni5O16 (n = 5), respectively.
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The RIXS spectra for the Nd2NiO4 (n = 1) sample qualita-
tively agree with published magnetic dispersions for La2NiO4

(n = 1) [44,64], but the magnon bandwidth is reduced to
about 75% of that observed in the La-based material, con-
sistent with reported differences between bulk Nd2NiO4 and
La2NiO4 [68]. Larger perovskite distortions and rotations
in Nd-based compounds can play a key role in driving
this reduction in magnetic energy scales by bending the
Ni-O-Ni bond angles [63,69,70], weakening antiferromag-
netic superexchange interactions. These rotations can also
increase spin canting, introducing a ferromagnetic out-of-
plane magnetization component which can cause an effective
reduction in the magnon energy [68,71–73]. Lastly, the large
magnetic moment on the neodymium atoms can further in-
teract with magnetic moments on Ni sites, competing with
in-plane magnetic exchange interactions and introducing a
large magnetic anisotropy [68].

Magnetic energy scales are reduced by about 25%
in Nd4Ni3O10 (n = 3) and Nd6Ni5O16 (n = 5) relative to
Nd2NiO4 (n = 1) (Fig. 3). We are unable to resolve a notable
difference between Nd4Ni3O10 (n = 3) and Nd6Ni5O16 (n =
5). In fact, the magnon bandwidth in both Nd4Ni3O10 (n =
3) and Nd6Ni5O16 (n = 5) agrees well with that observed
in NdNiO3 (n = ∞) [55,74], suggesting that as n increases,
magnetic interactions quickly approach the behavior seen in
the end member of the series. For all n studied, the magnetic
bandwidth is similar to that of the Ruddlesden-Popper bilayer
La3Ni2O7 [9] and the square-planar trilayer La4Ni3O8 [8], in-
dicating common magnetic interaction strengths across these
diverse layered nickelate materials.

We interpret the softening of magnetic interactions with
increasing n to be dominantly driven by the increase in
effective doping, which can disrupt the antiferromagnetic
exchange by introducing states that act as spinless impu-
rities. This suggests analogies between Ruddlesden-Popper
nickelates and other materials such as square-planar nicke-
lates [7] and La2−xSrxNiO4 (n = 1), where magnon energies
are reduced by a factor of 2 or more upon the addition of
0.5 holes/site [44,45,75,76]. Compared to these chemically
doped nickelates, however, the 25% magnon softening in
Nd4Ni3O10 (n = 3) and Nd6Ni5O16 (n = 5) (Fig. 3) is less
than that predicted solely on the basis of the effective doping
of an additional 0.67 and 0.8 holes/site, respectively. The
effective doping might be overestimated by simple electron
counting arguments, as structurally driven doping is pre-
dicted to introduce additional correlations that renormalize the
effective doping amount in the layered square-planar nicke-
lates [77–79]. Holes may also be unevenly distributed between
planes within n-layer blocks, leading to contributions from
inequivalent NiO2 layers, further complicating the magnon
mode structure probed by RIXS. However, both these ef-
fects would likely impart only small changes to the effective
doping.

Magnetic energy scales may be further modified by the
increase of dimensionality with increasing n, in addition to
changes due to the effective doping of 1/n holes per Ni2+ ion.
Increasing n introduces an additional out-of-plane exchange
pathway between neighboring NiO2 layers which is absent
in Nd2NiO4 (n = 1). In Nd2NiO4 (n = 1), the magnetic Ni
sites can interact with four neighboring Ni sites. In higher n

compounds, Ni atoms in the inner layers can interact with
six neighboring Ni sites, while Ni atoms in the two outer
layers can interact with five neighboring Ni sites. Because
each Ni atom now has more magnetic exchange pathways,
we expect an overall increase in the magnetic bandwidth with
increasing n (Supplemental Material, Sec. S3 [26]), compet-
ing with the overall decrease due to increased doping. The
out-of-plane exchange interaction Jz can be quite strong due
to the coupling of partially filled d3z2−r2 orbitals by apical
oxygen atoms. In fact, we see already for Nd4Ni3O10 (n = 3)
that the magnetic bandwidth closely approaches the ≈50-meV
bandwidth seen in NdNiO3 (n = ∞) [55,74]. Thus the intro-
duction of these out-of-plane exchange interactions may play
a key role in setting the magnetic energy scales in higher
order n Ruddlesden-Popper nickelates, partially offsetting the
magnetic softening due to increased doping.

V. CONCLUSION

We used Ni L3-edge RIXS to determine the evolution of
the electronic and magnetic structure of layered Ruddlesden-
Popper nickelates Ndn+1NinO3n+1 with layer number n. We
show that as n is increased, holes are doped into itinerant
ligand bands, moving the system from a |d8〉 configuration
for n = 1 to a |d8L〉 configuration. This finding agrees well
with the behavior of the end members of the series, NdNiO3

(n = ∞) and Sr-doped La2−xSrxNiO4 (n = 1), confirming
systematic changes across this family of materials with doping
and structural tuning. These doped holes cause a softening of
the magnetic excitations in the higher n compounds; however,
the softening is partially mitigated due to the introduction of
additional out-of-plane magnetic interactions with increasing
n, which increase the energy scale of magnetic interactions.
Thus, structural and dimensional control can tune both elec-
tronic and magnetic properties of materials in a complex and
interdependent fashion, allowing access to a richer material
space than that accessible by chemical doping alone.
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