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Resonant inelastic x-ray scattering in the topological semimetal FeSi
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The energy spectrum of topological semimetals contains protected degeneracies in reciprocal space that
correspond to Weyl, Dirac, or multifold fermionic states. To exploit the unconventional properties of these
states, one has to access the electronic structure of the three-dimensional bulk. In this paper, we present a
joint theory-experiment study of the electronic structure of a candidate topological semimetal with resonant
inelastic x-ray scattering (RIXS). We resolve the bulk electronic states of FeSi using momentum-dependent
RIXS at the Fe L3 edge. We observe a broad excitation continuum devoid of sharp features, consistent with
particle-hole scattering in an underlying electronic band structure. Using density functional theory (DFT), we
calculate the electronic structure of FeSi and derive a band theory formulation of RIXS in the fast collision
approximation to model the scattering process with zero adjustable parameters. While band theory predicts an
excitation continuum with broad spectral features similar to the observed ones, discrepancies between theory
and experiment suggest the presence of low-energy processes that DFT alone does not account for. This study of
RIXS in a topological semimetal shows that RIXS is a useful tool for revealing unanticipated behavior of bulk
electronic states in this class of materials.
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I. INTRODUCTION

In the last decade and a half, topological matter has become
a cornerstone of quantum materials science [1]. The discovery
of three-dimensional topological insulators [2], in particular,
sparked a flurry of activity in the then-nascent field. Electrons
in these crystalline materials are effectively noninteracting,
giving rise to electronic bands in the bulk that are indistin-
guishable from those of a trivial band insulator. The electronic
wave function, however, is characterized by topological in-
dices that dictate the presence of symmetry-protected Dirac
states at the surface of the material, as well as nontrivial
(magneto)transport responses.

More recently, topological semimetals have been added to
the catalog of three-dimensional topological materials [3,4].
These systems also feature topologically protected boundary
states and nontrivial (magneto)transport, but additionally have
distinct geometric characteristics in their bulk band structure.
In the simplest case of Weyl semimetals, these geometric char-
acteristics are singly degenerate energy surfaces in reciprocal
space that contain a band touching point—a Weyl node—
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around which electronic bands disperse linearly in all three
directions in reciprocal space [5–7]. Such band touchings
are Berry curvature singularities characterized by topological
indices. The value of the topological index of a nodal point
determines the geometry of the band dispersion in the vicinity
of nodal points [8–10]. Conversely, the geometry of the bulk
bands becomes a proxy of topology in these materials. Mea-
suring the electronic density of states (DOS) in the bulk can
therefore reveal the topological nature of a semimetal.

Resonant inelastic x-ray scattering (RIXS) is a spectro-
scopic technique that yields momentum- and energy-resolved
spectra of charge-neutral electronic excitations. While RIXS
has been extensively used in studying magnetic excitations in
gapped materials like insulators and superconductors [11–13],
it is increasingly applied in studies of compounds that host
itinerant carriers with small or no charge gaps [14–16]. That
RIXS can be used to map electronic bands of materials,
including semimetals, has long been established [17–25]. Im-
provements in resolution in recent years have renewed interest
in using RIXS to detect band structure effects at meV en-
ergy scales in materials of technological interest, such as
unconventional superconductors [26]. There have even been
theoretical proposals to use RIXS to measure topological in-
dices of nodal points in topological semimetals [27,28]. These
prospects are particularly appealing for probing the bulk of
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three-dimensional materials, since alternative techniques such
as angle-resolved photoemission (ARPES) and scanning tun-
neling spectroscopy, predominantly probe the surface rather
than the bulk. Furthermore, topological nodal points may only
appear above the Fermi level or as a result of an applied mag-
netic field, settings in which the resolving power of ARPES is
limited. As these settings may be relevant to the technological
exploitation of topological materials, alternative methods to
visualize the bulk band structure and to identify topological
features are sought after. Before honing in on properties of
topological origin, however, one has to determine whether
bulk band structure effects at large are detectable in RIXS of
topological semimetals.

The monosilicide family XSi with X = Fe, Co, Rh, Mn,
Re, Ru was proposed as a platform for the realization of multi-
fold fermions, a generalization of Weyl fermion states arising
at points of higher degeneracy in a band structure [10,29].
These materials feature the cubic B20-type structure with
noncentrosymmetric space group P213 (No. 198). While some
studies report success in modeling FeSi as a nonmagnetic
band insulator or semiconductor with a gap of 50–80 meV
solely with DFT [30,31], others report significant band renor-
malization effects due to interactions [32]. Furthermore,
many experimental studies of FeSi have revealed an intricate
temperature dependence of electronic properties [30,32–34].
Finally, it has recently been debated whether FeSi exhibits
Fermi arcs near the Fermi level, even within the band structure
picture [30]. These intricacies of the electronic properties of
FeSi warrant additional research on this material with differ-
ent methods.

In this paper, we use RIXS to probe the bulk of FeSi,
aiming to quantitatively test how bulk band structure mani-
fests in RIXS spectra of a putative topological semimetal. We
observe broad continua in the RIXS spectra of FeSi, consistent
with particle-hole scattering in an underlying band structure.
We model the RIXS process in the fast-collision approxi-
mation using the band structure of FeSi as determined by
density functional theory (DFT) calculations. Our modeling is
completely ab initio and includes zero adjustable parameters,
yet captures the number and position of the most prominent
RIXS spectral features, albeit imperfectly. This agreement is
comparable to the state of the art in spectroscopy of topolog-
ical semimetals. Our results show that discrepancies between
experimental RIXS spectra and band theory of candidate
topological semimetals may be significant. Understanding the
origin of these discrepancies is an important stepping stone
towards higher resolution RIXS experiments aiming to visu-
alize topological nodal points, and thus identify and classify
topological semimetals.

II. THEORY

A. RIXS cross section and fast collision approximation

We briefly introduce the theoretical description of RIXS at
zero temperature. More comprehensive presentations of RIXS
can be found in Refs. [35,36].

In a RIXS experiment, core electrons of an ion are pro-
moted to a state above the Fermi level εF by an intense x-ray
beam, thereby locally exciting the irradiated material into a

highly energetic and short-lived intermediate state. Subse-
quently, the core hole recombines with a valence electron. The
process imparts both energy and momentum to particle-hole
excitations in the material. In what follows, we will consider
excitation of core electrons directly into orbital(s) close to εF ,
which give rise to the low-energy physics in the material. This
process, which is often referred to as direct RIXS, is illustrated
in Fig. 1.

The double differential cross section is a measure of the
total RIXS intensity. Up to a constant prefactor, it is given by

I (kin, kout, ωin, ωout, εin, εout)

=
∑

f g

|F f g(kin, kout, ωin, εin, εout)|2δ(Eg − E f + h̄�ω),

(1)

where h̄�ω = h̄(ωin − ωout) is the energy transferred to the
material, kin and kout (εin and εout) the incoming and outgoing
photon wave vectors (polarizations), and Eg and E f the en-
ergies corresponding to initial and final many-body states |g〉
and | f 〉 of the valence electrons. The scattering amplitude F f g

in the dipole approximation is

F f g(kin, kout, ωin, εin, εout)

= 〈 f |D̂†(εout, kout ) Ĝ(ωin) D̂(εin, kin )|g〉, (2)

where Ĝ is the intermediate-state propagator

Ĝ(ωin) = (Eg + h̄ωin + i� − Ĥ)−1, (3)

with Ĥ the Hamiltonian describing the system in the inter-
mediate excited state and � the intermediate-state inverse
lifetime. The dipole operators D̂ and D̂ † represent the x-ray
absorption and emission, respectively. For a crystalline mate-
rial, they can be written as

D̂(ε, k) = ε· D̂k, (4)

D̂k =
∑
μ,ν

〈μ|̂r − rμ|ν〉
∑

R

eik·R d̂ †
Rμ p̂Rν

, (5)

where R is the lattice position. States |μ〉 and |ν〉 express
single-electron valence and core states, respectively. The com-
bined valence (core) index μ (ν) encodes spin, orbital, and
sublattice degrees of freedom. Core states |ν〉 are conveniently
expressed as atomic orbitals, whereas valence states |μ〉 can
be appropriately chosen Wannier functions, both localized in
space around the same position rμ of each atomic site within
the unit cell. The position operator r̂, defined with respect to
each lattice position R, is the same for all ions. For the L2/3

and M2/3 resonant edges, the operators d̂ †
Rμ and p̂Rν create a

d-orbital electron and a p-orbital core hole, respectively.
Physical arguments allow us to simplify the RIXS scatter-

ing amplitude. First, core holes do not hop appreciably; they
are created and annihilated at the same site. Taking this into
account, F f g becomes [36]

F f g(q, ωin, εin, εout)

=
∑

μ,ν,μ′,ν ′
Tμνμ′ν ′ (εin, εout)Fμνμ′ν ′ (q, ωin ), (6)
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FIG. 1. Illustration of the direct RIXS process and reduction to effective particle-hole scattering via the fast-collision approximation.

where q = kin − kout. The scattering amplitude has been fac-
tored in the atomic scattering tensor

Tμνμ′ν ′ (εin, εout) = 〈μ|εout · r̂|ν〉∗〈μ′|εin · r̂|ν ′〉 (7)

and the fundamental scattering amplitude

Fμνμ′ν ′ (q, ωin ) = 〈 f |
∑

R

e−iq·R p̂†
Rν d̂Rμ

Ĝ(ωin) d̂ †
Rμ′ p̂Rν ′ |g〉.

(8)

The intrinsic spectral characteristics of a material are carried
by the tensor F , which is typically the main quantity of
interest in theoretical studies. The tensor T modulates the
scattering amplitude according to the geometry of the local-
ized core and valence states. The entries of T can be calculated
given knowledge of the valency of the targeted ion and the
symmetry group of the crystal [37–40].

Then, within the fast-collision approximation, one assumes
that Ĝ(ωin) ≈ 1/�, where � is the inverse core-hole lifetime.
In this approximation, the RIXS process reduces to the intro-
duction of a particle-hole excitation with fixed momentum and
energy in the material—see Fig. 1 for an example.

Before proceeding to derive the theory of RIXS in band
structures, we evaluate the geometric modulation of the RIXS
spectrum owing purely to the orbital content of the quantum
states involved in the RIXS process. This is obtained by set-
ting the fundamental scattering amplitude Fμνμ′ν ′ to unity:

T (εin, εout) =
∣∣∣∣∣

∑
μ,ν,μ′,ν ′

Tμνμ′ν ′ (εin, εout)

∣∣∣∣∣
2

. (9)

We shall use T as a diagnostic to disentangle contributions
to the modulation of the RIXS intensity as a function of
scattering angles. The first contribution comes through the po-
larization vectors, which are angle dependent—see Fig. 2. The
second contribution is the intrinsic momentum dependence
coming from electronic dispersion in the material. In Sec. V,
we calculate the geometric modulation in Eq. (9) for FeSi
and compare it to the scattering angle dependence of RIXS
intensity.

B. RIXS process in a band structure

We wish to describe the RIXS response of crystalline
materials in which electrons are, to a good approximation,

noninteracting. Valence electrons in these materials are well
described by band theory. The states |g〉 and | f 〉 in Eq. (2) are
then collections of Bloch modes.

For a given RIXS edge, one then sums over core states
|ν〉 and valence Wannier states |μ〉 and |μ′〉 connected by the
dipole operators D̂, D̂†. Here we study the Fe L3 edge, hence
we consider 2p3/2 orbitals for core electrons and the 3d shell
for valence electrons.

In k space, the band eigenbasis is given by a unitary
rotation of a basis of Wannier states |μ〉 per lattice posi-
tion R to a basis of Bloch states |kμ〉. The Wannier states
have wave functions ϕμ(x) = 〈x|μ〉 that are centered about
different points in the unit cell, possibly atomic sites. Let
ϕkμ(x) = 〈x|kμ〉 be the spatial wave function of |kμ〉, which
could be a spinor. We then have

ϕkμ(x) = 1√
N

∑
R

eik·Rϕμ(x − R). (10)

The raising and lowering operators of the Bloch wave func-
tions are d̂ †

kμ and d̂kμ. They are defined by d̂ †
kμ|	〉 = |kμ〉,

FIG. 2. Schematic of the RIXS setup. kin and kout, respectively,
denote the ingoing and outgoing scattering vectors. The components
of the ingoing and outgoing photon polarization within the scattering
plane are denoted by πin and πout while the σ polarization direction is
the same for both. The incident angle θi is measured with respect to
the sample surface, that is, the a direction in the sample coordinates
while the c direction is the normal to the sample surface.
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{d̂kμ
, d̂k′μ′ } = 0, and {d̂kμ

, d̂ †
k′μ′ } = δk,k′δμ,μ′ , where |	〉 is

the vacuum of valence excitations and core holes. A general
Hamiltonian describing noninteracting valence electrons is

Ĥband =
∑
k∈BZ

∑
μ,μ′

d̂ †
kμ

Hμμ′ (k) d̂kμ′ , (11)

where Hμμ′ (k) are the elements of the matrix H (k).
Let U (k) be a matrix that diagonalizes H (k), such that
U †(k)H (k)U (k) is a diagonal matrix containing the eigen-
values εl (k), which constitute the dispersing bands. We can
then write

d̂kμ
=

∑
l

Uμl (k) ψ̂kl , (12)

where l denotes an energy band index and ψ̂kl annihilates the
corresponding eigenstate. The ground state at zero tempera-
ture is obtained by populating all states below the Fermi level,

|g〉 =
⎛
⎝ ∏

l,k∈BZ

�(εF − εl (k)) ψ̂
†
kl

⎞
⎠|	〉, (13)

with � the Heaviside step function. The Wannier lowering
operators at any lattice site R can be expressed in terms of the
band operators as

d̂Rμ
= 1√

N

∑
k∈BZ

e−ik·R d̂kμ
(14a)

= 1√
N

∑
l,k∈BZ

e−ik·R Uμl (k) ψ̂kl . (14b)

We now assume, as per the fast collision approximation,
that the intermediate-state Hamiltonian is well approximated
by the band Hamiltonian, along with a core hole inverse
lifetime � in the intermediate-state propagator. Due to this
assumption, core electron operators cancel out and the inter-
mediate state propagator becomes simply

Ĝ(ωin) = (Eg + h̄ωin + i� − Ĥband)−1, (15a)

=
∑

k

∑
l

|k, l〉〈k, l|
Eg + h̄ωin + i� − εl (k)

. (15b)

where |k, l〉 are band eigenstates, and we treat Eg and � as free
parameters to be determined by fitting the x-ray absorption
spectrum (see Appendix C).

Substituting the expression for d̂Rμ
in Eq. (14b) in Eq. (8),

we obtain the fundamental RIXS scattering amplitude in a
band structure:

Fμμ′ (q, ωin ) = 〈 f |
∑

k,k′∈BZ

∑
l,l ′

1

N

∑
R

e−i(k+q−k′ )·R

× Uμl (k)U ∗
μ′l ′ (k

′) ψ̂kl Ĝ(ωin) ψ̂
†

k′l ′ |g〉. (16)

Notice that F is independent of the core orbitals at this level
of description. The sum over R evaluates to Nδk′,k+q, which
enforces k′ = k + q. When εl ′ (k + q) > εF, we have that
ψ̂

†
k+ql ′ |g〉 is an eigenstate of the band Hamiltonian with energy

Eg + εl ′ (k + q) (otherwise the single particle state is already

occupied and this term evaluates to zero). The action of Ĝ(ωin)

on ψ̂
†

k+ql ′ |g〉 is

Ĝ(ωin) ψ̂
†

k+ql ′ |g〉 = �(εl ′ (k + q) − εF)

h̄ωin − εl ′ (k + q) + i�
ψ̂

†
k+ql ′ |g〉. (17)

Furthermore, the action of ψ̂kl on ψ̂
†

k+ql ′ |g〉 is nonzero only if
εl (k) < εF (we need this single particle level to be occupied
for the term to be nonzero). Using this, we obtain

Fμμ′ (q, ωin )

=
∑
l,l ′

∑
k∈BZ

[
〈 f |ψ̂kl ψ̂

†
k+ql ′ |g〉�(εl ′ (k + q) − εF)

× �(εF − εl (k))
Uμl (k)U ∗

μ′l ′ (k + q)

h̄ωin − εl ′ (k + q) + i�

]
. (18)

The sum over final states | f 〉 can be taken over the eigenstates
of Ĥband. The pair of step functions in the fundamental scat-
tering amplitude given above in Eq. (18) ensures that there
is a unique | f 〉 that makes the inner product 〈 f |ψ̂klψ̂

†
k+ql ′ |g〉

nonzero, since the role of the operator pair is to simply create
particle-hole excitations across the Fermi level. Thus, the final
sum over | f 〉 can be replaced as∑

f

→
∑
l,l ′

∑
k∈BZ

�(εl ′ (k + q) − εF) �(εF − εl (k)). (19)

This corresponds to summing over final states with one
particle-hole excitation in the valence bands. The inner prod-
uct is then redundant and can be removed.

The final form of the RIXS intensity for systems well-
described by band theory is

I (q, ωin,�ω, εin, εout)

=
∑
l,l ′

∑
k∈BZ

�(εl ′ (k + q) − εF) �(εF − εl (k))

×
∣∣∣∣∣

∑
μ,ν,μ′

〈μ|εout · r̂|ν〉∗〈μ′|εin · r̂|ν〉

× Uμl (k)U ∗
μ′l ′ (k + q)

h̄ωin − εl ′ (k + q) + i�

∣∣∣∣∣
2

× η

[εl (k) − εl ′ (k + q) + h̄�ω]2 + η2
, (20)

where we have replaced the Dirac δ function with a Lorentzian
of peak broadening η to represent finite experimental
resolution.

With respect to a local set of coordinate axes, the incoming
x-ray polarization ε has components (εx, εy, εz ). The outgoing
polarization is usually not measured, and hence one sums
over either polarizations parallel to and perpendicular to the
scattering plane or over left, linear, and right polarizations.
We list the polarization matrix elements for the specific case
of the L3 edge of a 3d transition-metal in Table I.

III. EXPERIMENTAL METHODS

A. Sample preparation

Single crystals of FeSi were prepared using a Ga flux
method. We mixed the starting materials in a molar ratio of
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1:1:15 for Fe:Si:Ga in a glove box filled with argon. This
mixture was placed in an alumina crucible and sealed in an
evacuated quartz tube. The crucible was heated to 1150 ◦C
and held for 10 h before cooling to 950 ◦C at 2 K/h, after
which the flux was centrifuged. The crystals were washed
with diluted hydrochloric acid in order to remove Ga flux
from the surface of the samples. This process yielded samples
with large, millimeter-sized flat crystal facets. The samples
were checked with laboratory x-ray diffraction and inelastic
x-ray scattering find that the samples have excellent crystallo-
graphic quality [41]. The electronic structure of the samples
was checked with x-ray absorption spectroscopy during the
RIXS experiments, obtaining results that are consistent with
the literature [42].

B. RIXS and experimental geometry

RIXS measurements were performed at the Soft Inelas-
tic X-Ray (SIX) beamline at the National Syncrotron Light
Source-II (NSLS-II). The energy resolution was 23 meV and
data was collected at a temperature of 75 K, a temperature at
which FeSi has been observed to behave as a semiconductor
with an indirect band gap [30]. The experimental setup is
depicted in Fig. 2. The laboratory coordinates are denoted
by x, y, z while the crystallographic axes are labeled a, b, c.
We define the incident and outgoing beam angles with respect
to the sample coordinate system, wherein the c direction is
the normal to the sample surface and the ac plane is the
scattering plane. Experimental data are corrected to account
for self-absorption effects.

With θi denoting the incident angle measured with respect
to the sample surface and 2θ denoting the angle between the
incident and outgoing beam, we can easily verify the follow-
ing in the sample frame:

kin = kin(− cos θi, 0,− sin θi ), (21a)

kout = kout (− cos(2θ − θi ), 0, sin(2θ − θi )), (21b)

επ,in = (− sin θi, 0, cos θi ), (21c)

επ,out = (sin(2θ − θi ), 0, cos(2θ − θi )), (21d)

εσ,in = εσ,out = (0, 1, 0). (21e)

Although in reality the ingoing and outgoing photon
momentum magnitudes kin and kout are different owing to
nonzero energy transfer �ω, the difference is negligible since
�ω � ωin, and hence kin ≈ kout = k. The momentum transfer
to the material q is then

q = k(cos(2θ − θi ) − cos θi, 0,− sin(2θ − θi ) − sin θi ).

(22)

In practice, the ingoing and outgoing beam directions are set
to specific values, which defines a specific 2θ . By rotating
the sample about the y axis (or, equivalently, b axis), we can
change q by changing θi .

IV. DENSITY FUNCTIONAL THEORY
AND TIGHT-BINDING MODEL

The band structure of FeSi was simulated in a similar way
to prior studies of FeSi [41]. We performed first-principles

FIG. 3. Band structure along a high-symmetry path (left) and
density of states (DOS) (right) of FeSi as obtained from DFT cal-
culations. Energy differences between most prominent DOS features
are indicated with arrows.

calculations based on DFT [43] within the Perdew-Burke-
Ernzerhof exchange correlation [44] implemented in the
VIENNA AB INITIO SIMULATION PACKAGE [45]. The plane-
wave cutoff energy was 450 eV with a 9 × 9 × 9 k-mesh in the
BZ for self-consistent calculation without considering spin-
orbit coupling. Maximally localized Wannier functions [46]
were used to obtain the tight-binding model of bulk FeSi with
the lattice constants a = b = c = 4.48 Å. The calculated band
structure and DOS are shown in Fig. 3.

V. RIXS SPECTRUM OF FeSi

The RIXS intensity at the Fe L3 edge with π -polarized
incident beam is shown in Fig. 4 in the incident energy-energy
loss plane. The absence of prominent sharp inelastic features
suggests a particle-hole continuum, consistent with particle-
hole excitations in a partially filled band structure.

Angular-dependent RIXS spectra are shown in Fig. 5 for
two values of 2θ , which allow us to examine how the spectra
change as the momentum and in- and outgoing x-ray polar-
izations are varied. This was performed at an x-ray energy of
h̄ωin = 708.7 eV with π x-ray polarization to obtain a strong

FIG. 4. Color maps of RIXS intensity with 2θ = 150◦ and θi =
68◦ for π -polarized incident beam as a function of incident photon
energy h̄ωin and energy loss �ω at the L3 edge of Fe in FeSi as
obtained (a) in experiment and (b) in the band theory formalism of
Sec. II B.
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FIG. 5. Angle-dependent RIXS spectra at h̄ωin = 708.7 eV
with π x-ray polarization for (a) 2θ = 150◦ and (b) 2θ =
70◦ and comparison to simulations within band theory (bottom
panels) using Eq. (20) with � = 0.8 eV and ε0 = 707.67 eV.
For scattering angle 2θ = 150◦, the incident angle values (mo-
mentum transfer vectors, in units of reciprocal lattice vectors)
are θi = 10◦, 30◦, 45◦, 68◦, 120◦ [q = (−0.45, 0, 0.21), (−0.35,

0, 0.35), (−0.25, 0, 0.43), (−0.06, 0, 0.49), (0.35, 0, 0.35)], while
for 2θ = 70◦ we have θi = 10◦, 30◦, 60◦ [q = (−0.12, 0, 0.27),
(−0.03, 0, 0.29), (0.12, 0, 0.27)].

signal. Spectral weight from inelastic processes lies predom-
inantly in a window of width ∼5 eV. Within that window, all
spectra have similar line shapes featuring a sharp onset of
intensity at 1 eV, a peak around 2 eV and a shoulder above
3 eV. Overall inelastic intensity increases with increasing θi

for both values of 2θ . For 2θ = 150◦, the main peak changes
slightly to higher energies with increasing θi, from ∼2 eV at
θi = 10◦ to ∼2.1 eV at θi = 120◦, while the shoulder displays
no appreciable variation. The RIXS spectra for 2θ = 70◦
show minimal spectral shape changes with angle. Finally, ex-
perimental spectra also contain subdominant features close to
the elastic line (�ω < 1 eV)—visible especially in the spectra
for 2θ = 70◦—that, as discussed below, deviate from the band
theory predictions.

We use the band theory formulation of Sec. II B and
Eq. (20) to theoretically model the RIXS process in
FeSi [47]. A fit of the absorption spectrum (see Appendix C)
yields � = 0.8 eV and Eg = 707.67 eV, and we choose a peak
broadening η = 100 meV. We use a 48 × 48 × 48 grid of k
points in the Brillouin zone for the 32-band tight binding
model detailed above.

The simulated spectra show a structure similar to that
observed experimentally, with inelastic weight in a ∼5 eV
window containing a peak at �ω ∼ 2.5 eV and shoulder at
�ω ∼ 3.5 eV. As in experiments, overall inelastic intensity
increases with increasing θi for both values of 2θ , though
to a lesser extent. Compared to experiments, features appear

FIG. 6. The contribution of the dipole matrix elements to the
RIXS spectrum of FeSi for π ingoing polarization as given by Eq. (9)
after summing over σ and π polarizations of the outgoing beam.

at higher energies in simulated spectra. The sharp onset of
intensity at 1 eV is not reproduced in calculated spectra; an
almost linear increase from 0 eV all the way to the max-
imum at ∼2.5 eV is seen instead. For both values of 2θ ,
the simulated spectra are essentially the same. For 2θ = 70◦
and θi = 10◦ specifically, the main peak at ∼2.5 eV is ab-
sent, leading to theory and experimental spectra that look
qualitatively different. Our data include two points in which
equivalent momenta of (±0.35, 0, 0.35) and (±0.12, 0, 0.27)
are accessed at different angles, providing the opportunity to
try to separate momentum- and polarization-dependent ef-
fects. We see that since these momentum-equivalent points
differ, there polarization-dependent effects are present. The
weakness of explicitly momentum-dependent effects may re-
late to the large number of overlapping electronic bands, as
seen in Fig. 3, averaging out the momentum dependence in
RIXS.

To investigate what causes the overall increase in RIXS
intensity with increasing θi, we calculate the atomic scatter-
ing tensor (7). From this, we obtain the modulation of the
RIXS spectrum (9) coming purely from the orbital content
of core and valence states. After summing over outgoing
polarizations, we obtain the behavior shown in Fig. 6. Com-
paring to the θi dependence of RIXS spectra in Fig. 5, we
see that geometric considerations are insufficient to explain
the momentum dependence of RIXS intensity in experiments:
the momentum dependence of the atomic scattering tensor
is different from the one observed, even showing a reverse
trend in the case of 2θ = 70◦. Reinstating the band structure
fundamental scattering amplitudes in Eq. (20) yields the ex-
perimentally observed increase of total RIXS intensity with
increasing θi, albeit only qualitatively, as shown in Fig. 5.

VI. DISCUSSION AND CONCLUSION

We have seen that the theoretical formulation of RIXS
based on band theory captures the momentum dependence
of the total inelastic intensity in experimental Fe L3-edge
RIXS spectra of FeSi better than a calculation based on just
the atomic multiplet. Band theory also reproduces the right

245137-6



RESONANT INELASTIC X-RAY SCATTERING IN THE … PHYSICAL REVIEW B 110, 245137 (2024)

bandwidth for the inelastic part of the spectrum, as well as the
most prominent features therein.

On the other hand, non-negligible discrepancies between
theory and experiment exist. While the overall momentum de-
pendence of the RIXS spectrum is reproduced by band theory,
experimental spectra depend more sensitively on θi . Spectral
features also do not align perfectly between experiment and
theory: both peak and shoulder appear at higher energies in
calculated spectra. Furthermore, the sharp onset of inelas-
tic intensity at 1 eV is not present in calculations. Finally,
a feature around 0.3 eV is present in observed spectra—
particularly for 2θ = 70◦—that is absent in our calculations.

Before we discuss potential reasons for these discrepan-
cies, we emphasize that the level of agreement between band
theory and experiment in our paper compares favorably to
the state-of-the-art RIXS on approximately noninteracting
semimetals [24] or topological materials [16]. Furthermore,
all prior work on RIXS of topological materials has been
pure theory with no attempt to compare directly to experiment
to our knowledge. Our paper attempts a momentum-resolved
comparison for this class of materials, in which RIXS is still
poorly understood. It is also unique in that it includes the
full dipole matrix elements for RIXS of a complex multi-
orbital shell in a first-principles approach that includes zero
adjustable parameters.

The aforementioned merits of our analysis are a con-
sequence of several approximations made, without which,
evaluating the RIXS spectrum of FeSi would be intractable.
First, the band theory of RIXS ignores electronic correlations.
A more detailed theoretical study of the RIXS spectrum would
require identifying the precise type, range, and magnitude of
interactions present in FeSi. Fully incorporating the effects
of interactions in theoretical studies of RIXS is neverthe-
less a considerable challenge, since we are dealing with a
three-dimensional material with 32 relevant orbitals per unit
cell. Numerical simulation of the RIXS spectrum based on
dynamical mean field theory [48] may eventually be up to
this task. Second, in the fast collision approximation we ig-
nore the effects of a finite core-hole lifetime, which may be
appreciable in 3d transition metal compounds [49]. Future
simulations could be improved by incorporating dynamics and
interactions with the core hole in the intermediate state.

The main takeaway of our results is that, while RIXS can
reveal broad features of the underlying electronic structure
in approximately noninteracting materials, a more detailed
understanding of mechanisms beyond free-electron physics
may be needed to resolve finer features relevant in the study
of topological semimetals. In the case of FeSi, the extent to
which correlations play a role in the Fe 3d shell is not clear.
Previous work has revealed signatures of electronic interac-
tions [50,51] whose importance is temperature dependent and
which may cause substantial band reorganization [32]. Our
results are informative in understanding these effects, since
they show that the FeSi band structure as obtained by DFT
alone cannot fully reproduce the RIXS spectrum.

In conclusion, we have reported RIXS spectra of FeSi at
the Fe L3 edge. We observe an excitation continuum without
sharp features. Through a band theory formulation of RIXS in
the fast collision approximation, we model the RIXS process
using the ab initio band structure of FeSi. We obtain reason-

able agreement for the spectrum bandwidth, as well as the
number and position of main features. Theory also reproduces
the angular trend of the overall RIXS intensity, albeit only
qualitatively. In contrast, band theory fails to capture the sharp
onset of intensity at 1 eV, the subdominant feature at 0.3 eV,
and the dispersion of the main peak seen for 2θ = 150◦. The
disagreements between theory and experiments are compara-
ble to those seen in recent works on RIXS in semimetals (see,
e.g., Ref. [24]) and spectroscopy of the bulk in 3D topological
materials in general (see, e.g., Refs. [52,53]). Finally, we
emphasize that, in contrast to all previous RIXS studies of
semimetals, here we perform a momentum-resolved compari-
son between experiment and band theory with zero adjustable
parameters. Our paper thus presents a useful benchmark for
future studies that aim to resolve distinctive band structure
features in topological materials with RIXS.
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APPENDIX A: SELF ABSORPTION CORRECTION

We performed a self-absorption correction in a similar way
to Refs. [54,55]. In a sample that is thicker than the x-ray
absorption length, the effect of self-absorption is

I

I0
= sin θo

sin θi + sin θo
, (A1)

where I and I0 are the scattering intensities with and without
self-absorption, which depends on incident (scattered) angles
θi (θo = 2θ − θi). A more sophisticated approach would also
account for polarization dependence, but this is expected to be
small in a cubic material such as FeSi.

APPENDIX B: POLARIZATION MATRIX ELEMENTS
AND THE ATOMIC SCATTERING TENSOR

The DFT-derived tight-binding model used for the calcu-
lations presented in the paper involves 32 basis orbitals per
unit cell of the crystal lattice. Due to the assumption of zero
spin orbit coupling for the valence bands, this gives rise to
32 twofold spin-degenerate bands. The orbitals used are the
five 3d orbitals of each of the four Fe atoms and the three 3p
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TABLE I. Dipole matrix elements relevant for the L3 edge of FeSi. Only the polar and azimuthal integrals are evaluated since the radial
integral is the same for all the core-valence pairs and provides only an overall prefactor to the theoretical RIXS spectrum.
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orbitals of each of the four silicon atoms within a unit cell,
giving a total of 32 orbitals per unit cell.

Since the tight-binding model is expressed in terms of 3d
orbitals whose local axes are perfectly aligned with the crystal
axis for each of the four Fe atoms in the unit cell, we need
to compute the matrix elements of the 2p3/2 → 3d transi-
tions for just one of the atoms. The 2p orbitals all have the
same radial part of the wave function, φ2p(r), and, likewise,
the 3d orbitals have same radial wave function φ3d (r). The
radial integral of the various matrix elements in the atomic
scattering tensor is simply the radial integral of the product
φ2p(r) · φ3d (r) and the radial part of the dipole transition

FIG. 7. Optimal average absolute deviation fit to the L3-edge
x-ray absorption spectrum (XAS) of FeSi. The black dots represent
the experimental absorption spectrum while the continuous blue line
represents the theoretical spectrum calculated using the tight-binding
model described in Sec IV. The fit yields � = 0.8 eV and Eg =
707.67 eV.

operator. Since this is a common term that just provides an
overall multiplicative factor for the RIXS cross section, we
ignore it and compute only the azimuthal and polar integrals
of the matrix elements. We document the relevant matrix
elements of the dipole operator in Table I, which were verified
by comparing to open source RIXS code EDRIXS [56].

APPENDIX C: X-RAY ABSORPTION SPECTRUM
AND THEORETICAL FIT

To align the experimental RIXS spectra with theoretical
results obtained through ab initio calculations, we need to
determine the absolute energy scale Eg of the initial state. We
determine Eg through a fit of the experimental x-ray absorp-
tion intensity with the calculated absorption spectrum

Iabs(q, ωin, εin)

=
∑
εout

∑
l,l ′

∑
k∈BZ

�(εl ′ (k + q) − εF) �(εF − εl (k))

×
∣∣∣∣∣∣
∑

μ,ν,μ′

〈μ|εout · r̂|ν〉∗〈μ′|εin · r̂|ν〉Uμl (k)U ∗
μ′l ′ (k+ q)

Eg+ h̄ωin− εl ′ (k+ q)+ i�

∣∣∣∣∣∣
2

,

(C1)

which is obtained by integrating over �ω the RIXS spectrum
in Eq. (20). In addition to Eg, we consider the core hole inverse
lifetime � as a tunable parameter in the fit. We sum over
outgoing polarizations since the measured spectrum is not po-
larization resolved. Figure 7 shows the fit that minimizes the
average absolute deviation and yields the values � = 0.8 eV
and Eg = 707.67 eV.
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