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The applicability of mean field models of ferroelectric and

ferromagnetic quantum critical points is examined for a

selection of d-electron systems. Crucially, we find that the

tendency of the effective interaction between critical fluctua-

tion modes to become attractive and anomalous as the ordering
temperatures tend to absolute zero results in particularly

complex and striking phenomena. The multiplicity of quantum

critical fields at the border of metallic ferromagnetism, in

particular, is discussed here.
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1 Introduction We consider the nature of quantum
phase transitions driven by changes in composition of
materials or changes in applied pressure, magnetic field or
electric field in the low temperature limit. Quantum phase
transitions exhibit surprisingly subtle and complex beha-
viour even in comparatively simple examples of cubic
ferroelectric materials and ferromagnetic metals of high
purity, which will be the main focus of this article.

Early descriptions of quantum critical points (QCP),
developed independently in ferroelectric materials [1] and
ferromagnetic metals [2–6] in the 1970s, were based
essentially on f4-quantum field models. They differ from
the Ginzburg-Landau-Wilson models of classical critical
phenomena by the inclusion of the dynamics of the order
parameter field f(r,t), which represents a coarse-grained
electric or magnetic polarization as a function of spatial
coordinate r and temporal coordinate t (the imaginary time,
which has a finite range at non-zero temperatures,
0 < t < �h=kBT) [7]. The inclusion of the thermal coordinate
increases the relevant dimension from the spatial dimension
d to the effective dimension deff¼ dþ z, where z is the
dynamical exponent defining the dispersion relation, i.e., the
wavevector dependence of the frequency spectrum of
fluctuations of the field f at small wavevectors (see x2).

The self-consistent-field approximation, which applies
in the case of classical critical phenomena for d> 4 in
the classical f4 model, might apply under a less restrictive
condition d> 4 – z in the f4 quantum treatment of critical
phenomena. However, as discussed below, there are other
more subtle ways in which quantum and classical phase
transitions can differ [8, 9].

We begin by considering properties of ferroelectric and
ferromagnetic quantum phase transitions that seem capable
of a description in the self-consistent-field approximation as
outlined above. We then turn to examples of apparent
breakdowns of this approximation and discuss the possible
reasons for the unexpected behaviours observed.

2 Quantum criticality in a paraelectric
material We first consider the transition from a ferro-
electric state to a paraelectric state as a function of a
‘quantum tuning’ parameter such as pressure, chemical
composition or isotopic composition [10]. In a displacive
ferroelectric material characterized by a phase transition of
2nd order, the frequency gap, D, of an optical vibrational
mode vanishes continuously along with the Curie tempera-
ture TC at the QCP, in for instance a temperature-pressure
phase diagram. At this critical point the dispersion relation of
the optical mode becomes analogous to that of an acoustic
mode with z¼ 1. In the self-consistent-field approximation
to the quantum f4 model this implies that the electric
susceptibility or dielectric function diverges as 1/T2 in the
quantum critical regime (Table 1) [1, 11–14].

As shown in Fig. 1, this prediction is found to be
consistent qualitatively and roughly quantitatively with
observations in the cubic perovskite SrTiO3 in the range 5
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Quantum criticality above the upper critical dimension.
The dispersion relation, dynamical exponent, effective dimension,
deff¼ dþ z and quantum critical exponent of the order parameter
susceptibility x in the self-consistent-field approximation to the
quantum f4 field model for a displacive ferroelectric and for a
metallic ferromagnet in three dimensions (d¼ 3). The self-con-
sistent-field approximation is expected to be qualitatively correct
for deff> 4 and predicts x� 1/Tg, where g ¼ (deff� 2)/z at the
QCP. In the dispersion relation, k is a correlation wavevector
(proportional to D in the case of a ferroelectric QCP) that vanishes
at the QCP. The fluctuation spectrum in the right-hand column is
that expected for an itinerant-electron ferromagnet of interest here,
which is characterized by a dynamical exponent of three. For
comparison we note that at a magnetic QCP of an insulating
magnet z is expected typically to be equal to two. An example
of the applicability of a mean field model for a magnetic QCP of an
insulating magnet with z¼ 2 has been given for a magnetic field
induced QCP in BaCuSi2O6 [15, 16].

ferroelectrica ferromagnetic
QCP QCP

fluctuation spectrum v2
q � k2 þ q2 Gq � qðk2 þ q2Þ

zðk ! 0Þ 1 3
deff 4 6
x 1=T2 1=T4=3

aLogarithmic correction to x is expected since in this case deff is equal to the

upper critical dimension.

Figure 1 (online colour at:www.pss-b.com) Temperaturedepend-
ence of the inverse dielectric function e¼ 1þx near a ferroelectric
QCP [12]. Comparison of the observed and predicted (inset)
temperature dependence of 1/e in SrTiO3, a cubic perovskite on
the border of a displacive ferroelectric transition at low temperatures
(as discussed in the text, d¼ 3, z¼ 1). The observed quadratic
temperature dependence of 1/e is qualitatively consistent with the
prediction of the self-consistent-field approximation of the quantum
f4 field model, except at very low temperature as stated in the text.
Thezero temperature parameters of the model areestimated from the
measured polarization vs. electric field equation of state as well as
neutron scattering and Raman scattering experiments at low temper-
atures. The temperature dependence of e is governed solely by the
thermal factor in the model and the zero-temperature parameters.
The cut-off wavevector in the calculation is taken to be the average
radius of the Brillouin zone.
to 50 K just on the paraelectric side of a ferroelectric to
paraelectric transition in the temperature-pressure phase
diagram [12]. A similar behaviour has also been found in
another paraelectric material somewhat further from the
QCP, KTaO3 [12]. The zero-temperature parameters of
the model employed are obtained from measurements of the
electric polarization versus electric field as well as from
neutron and Raman scattering data. The temperature
variation is given via a self-consistent solution of the f4

model, without the use of free adjustable parameters.
Shallow minima in the inverse dielectric functions

observed at low temperatures in both materials are not,
however, predicted by the above model. Potential mechan-
isms responsible for the observed minima include (i) the
coupling between the critical optical mode and conventional
acoustic modes [1, 13] and (ii) the long-range dipole–
dipole interaction beyond the self-consistent field
approximation [17], neither of which has been thus far taken
into account in a quantitative fashion. Both of these effects
can lead to an attractive interaction between fluctuation
modes, i.e., an attractive f4 term in the field model that can
drastically change the susceptibility and other properties
at very low temperatures. As we shall see below, the
emergence of an attractive f4 term is of central importance
also on the border of ferromagnetism.

3 Quantum tricriticality in an exchange
enhanced paramagnet We next consider the corre-
sponding problem of a quantum phase transition from a
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ferromagnetic to a paramagnetic state in a metal as a function
of a quantum tuning parameter such as applied pressure. The
corresponding self-consistent-field approximation to the
quantum f4 field model in a metal is known as the self-
consistent-renormalization (SCR) model, or equivalently the
Moriya-Hertz-Millis model [3, 6, 18, 19], which has seen a
number of independent and somewhat different develop-
ments. They have in common essentially a mean field
decoupling of the interaction between field modes (i.e., the
Fourier components fq(t) of f(r,t)), but differ in some
quantitative aspects (see, e.g., discussions in Ref. [20]). In
the calculations presented here we have employed the
approach reviewed in Ref. [21].

In contrast to the paraelectrics, the spectrum of
fluctuations of modes in the metallic state is governed by
Landau damping together with the consequences of a
vanishing inverse static magnetic susceptibility x�1 as
T! 0 and TC! 0. This leads to a spin-fluctuation spectrum
with imaginary frequency, Gq� qz, where z¼ 3. The SCR
model has been successful in accounting for a wide range of
thermal and transport properties in d-electron metals with
unsaturated spin polarizations and low TC (see, e.g., [18,
www.pss-b.com
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21]). However, near to and above the critical lattice density
where TC! 0, the SCR model in its simplest form can break
down. One of the mechanisms for the breakdown is the
emergence (as in the ferroelectrics) of attractive interactions
between critical fluctuation modes.

Consider, for example, the simple-cubic d-metal Ni3Ga,
which is a paramagnetic relative of the weakly ferromagnetic
metal Ni3Al (for recent discussions see Refs. [22, 23]). With
a high Wilson ratio of over 30, Ni3Ga is thought to be very
close to the border of ferromagnetism at low temperatures.
As can be inferred from Fig. 2 (and from the caption of
Fig. 2), the temperature dependence of the inverse
susceptibility is characterized by a temperature exponent
of order two or higher instead of the predicted value of 4/3
(Table 1) [23].

This unexpected behaviour may perhaps be understood
in terms of an extended form of the SCR model in which the
mode-mode coupling f4 term is attractive and an additional
positive stabilizing ‘three-mode’ coupling term of orderf6 is
included. This f6 SCR model leads to a temperature–
pressure phase diagram that includes regions of first and
second order transitions separated by a tricritical point (x5).
The magnetic field and temperature dependence of the
magnetic equation of state are consistent with this scenario
and suggests that Ni3Ga is on the border of a ferromagnetic
tricritical point in the low temperature limit, i.e., that it is on
Figure 2 (online colour at: www.pss-b.com) Border of a quantum
tricritical point [23]. The observed temperature dependence of the
inverse of the magnetic susceptibility x in the nearly ferromagnetic
simple-cubic metal Ni3Ga can be understood in terms of a f6 SCR
model with an attractive f4 term and a repulsive f6 term (d¼ z¼ 3,
inset). The zero temperature parameters of the model are estimated
from the measured magnetic equation of state and neutron scattering
data at low temperatures. The calculated temperature dependence of
x is governed by these zero-temperature parameters and the Bose-
Einstein thermal factor. (For definitions of the f4 and f6 models
referred to in the inset and for other details see Ref. [23].)

www.pss-b.com
the border of essentially a quantum tricritical point that is
dominated by the three-mode coupling term. The SCR model
in this case predicts a leading T8/3 rather than T4/3

temperature dependence of x�1. As shown in the inset of
Fig. 2 the f6 SCR model is indeed capable of describing the
observed variation of x�1 versus T at low temperatures [23].
The zero-temperature parameters of the model are obtained
from the measured magnetic equation of state and inelastic
neutron scattering data at low temperatures. The temperature
dependence of x�1 is then determined by the Bose-Einstein
thermal factor in the model without the use of free adjustable
parameters. The same general approach has been used in the
case of the paraelectrics and essentially in the analyses given
in the following section.

4 The non-local marginal Fermi liquid state in a
weakly ferromagnetic metal We turn to the case of
ferromagnetic d-electron metals with unsaturated spin
polarization and low Curie temperatures. Between TFL and
TMFL in the temperature–pressure phase diagram in Fig. 3,
the SCR model with d¼ 3 reduces approximately to the non-
local marginal Fermi liquid model [6, 18, 21, 25–27]
characterized in particular by a T5/3 temperature dependence
of the electrical resistivity, r, and T-linear temperature
dependence of the thermal resistivity, w, at low temperature.
This is to be contrasted with the predictions of the local
marginal Fermi liquid model [28] in which both r and w are
linear in T at low temperatures.

The non-local marginal Fermi liquid has been discussed
in other contexts [27] and for instance in cases where the
relevant critical fields are (i) transverse gauge fields in
Figure 3 (online colour at: www.pss-b.com) Temperature–pres-
sure phase diagram predicted by the SCR model for a weakly
ferromagnetic metal, ZrZn2 [24]. The solid line, labelled TC, is
the Curie temperature. Below the lower crossover line,TFL, the SCR
model predicts Fermi liquid behaviour characterized by a T2 resis-
tivity.AboveTFLuptoTMFL(excludinganarrowregimenearTC), the
SCR model predicts non-local marginal Fermi liquid behaviour
characterized by a T5/3 electrical resistivity and T-linear thermal
resistivity (d¼ z¼ 3).

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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ideally pure metals [25, 26] or (ii) statistical gauge fields on
the border of electron localization [29]. In these and other
related examples (see e.g., [30]) the dynamical exponent is
also three and the temperature dependence of, e.g., the heat
capacity is predicted to be of the same form as that of the SCR
model for a ferromagnetic QCP.

We consider the example of ZrZn2 that crystallizes in a
cubic laves structure (Fig. 3) (see Refs. [24, 31–34] for recent
discussions). As shown in Fig. 4, the observed temperature
dependences of r andw are consistent with the predictions of
the SCR model [24]. The correspondence between theory
Figure 4 (online colour at:www.pss-b.com) Temperaturedepend-
ence of transport properties in a weakly ferromagnetic metal, ZrZn2

[24]. (a) The temperature dependence of the electrical resistivity, r,
and (b) the temperature dependence of the difference d between the
thermal resistivity w and r, where w¼ L0T/k, k is the thermal
conductivity and L0 is the Lorentz number. The T5/3 electrical
resistivity and T-linear thermal resistivities are consistent with the
predictions of the SCR model (d¼ z¼ 3, insets in (a) and (b)) [18].
The zero temperature model parameters were obtained in a manner
similar to that described in the caption of Fig. 3. The cut-off wave-
vector in the model is taken to be the average radius of the Brillouin
zone, and the values given in the inset of (b) correspond to possible
characteristic dimensions (in inverse Angstrom) of the relevant
Fermi surface sheet. In the pure samples used here with residual
resistivities of 0.2mV cm the effect of phonons on w is found to be
small and ignorable below approximately 15 K.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and experiment suggests that the temperature variations of r
and w at low T are governed mainly by the effects of
scattering of carriers from nearly critical ferromagnetic spin
fluctuations. Scattering from phonons is found to be sub-
dominant below about 15 K in both r and w for samples
having residual resistivities well below 1mV cm [24,
Supplementary Information].

The T5/3 temperature dependence of r is observed to
extend up to the critical pressure pc of approximately 20 kbar
where TC! 0 in ZrZn2 (Fig. 5). However, the temperature
dependence changes abruptly from T5/3 to T3/2 upon crossing
pc, a result inconsistent with the predictions of the SCR
model in its conventional form (inset of Fig. 5) [24, 34]. The
T3/2 resistivity extends from pc up to at least twice pc [34, 35].
Intriguingly, similar behaviour, suggestive of the existence
of a critical regime rather than a critical point, has been
reported in other materials on the border of magnetic
phase transitions and in particular in MnSi [36–38] and
YbAlB4 [39].

5 Magnetic inhomogeneities above pc Both
ZrZn2 [40] and MnSi [41] exhibit weak first order transitions
just below pc and may be described, as in the case of Ni3Ga
and other ferromagnetic metals, by a temperature–pressure-
magnetic field phase diagram of the form shown schemati-
cally in Fig. 6 [37, 42]. In this figure a second order transition
line falls with increasing pressure and bifurcates at a
tricritical point leading to two sheets of first order transitions
(the negative magnetic field sheet is not shown).

The state near to the tricritical point in materials such as
MnSi is characterized by slowly varying magnetic inhomo-
geneities not described by the SCR model in its current form
Figure 5 (online colour at: www.pss-b.com) Temperature–
pressure phase diagram of ZrZn2 [24]. The magnetic transition
becomes weakly first order near to the critical pressure pc of the
orderof20 kbar [40].TheresistivityvariesasT5/3belowpcandasT3/2

above pc (upper inset) (see also Refs. [32, 34]). The T3/2 resistivity,
found to extend from pc to at least twice pc within the temperature
range 1 to 15 K [34, 35], is inconsistent with the predictions of the
SCR model in its conventional form.

www.pss-b.com



Phys. Status Solidi B 247, No. 3 (2010) 473

Original

Paper

Figure 6 (online colour at: www.pss-b.com) Temperature–pres-
sure–magnetic field phase diagram on the border of ferromagnetism.
Qualitativeformof thephasediagrampredictedbythef6 SCRmodel
with an attractive f4 term in the effective action [36, 37, 42].
Selected examples of phenomena observed on the border of ferro-
magnetism are also listed. Besides the cases discussed in the text we
have also included (i) an example of the coexistence of super-
conductivity and metallic ferromagnetism (UGe2 [59–61]),
(ii) spin-triplet superconductivity on the border of ferromagnetism
(M2RuO4, where M stands for Sr [62, 63] or potentially Ca at high
pressures) and (iii) an electronic nematic phase in Sr3Ru2O7 [64, 65]
near to a quantum critical end point in high magnetic fields.

Figure 7 (online colour at: www.pss-b.com) Surveying quantum
phase transitions. Cryogen-free automated system for scanning over
wide ranges in temperature, magnetic field and pressure. The figure
illustrates the cryomagnetic system being developed in a collabo-
ration between Dryogenics Ltd and the Cavendish Laboratory for
routine scans from room temperature to the low millikelvin range
employing a pulse tube cryocooler (40 K and 4 K plates on top) and a
two-stage magnetic refrigerator (two magnets and two pills at
bottom). The experimental region (with surrounding magnet in
middle) accommodates a variable-pressure diamond-anvil cell
designed for electronic and magnetic measurements under quasi-
hydrostatic conditions.
[43–45]. The existence of a tricritical point and magnetic
inhomogeneities near to and above pc has been attributed, for
example, to (i) the magneto-elastic coupling [46], (ii)
anharmonic quantum precession of the magnetization [18,
21, 47] and (iii) non-analytic corrections to the magnetic
equation of state expected to arise when full account is taken
of the effects of gapless particle-hole excitations at the Fermi
surface [48–53]. These effects lead to attractive interactions
between spin fluctuation modes and to a phase diagram of the
form shown in Fig. 6. Potentially they also lead to intrinsic
magnetic inhomogeneities near to pc.

In principle, first order transitions and inhomogeneities
can also arise via the effects of van Hove and nesting
singularities of the Fermi surface [18, 54–57]. A Fermi
surface such as that predicted for paramagnetic ZrZn2, that is
characterized both by a low Fermi velocity at k-points near to
van Hove singularities along <111> directions and strong
nesting along <100> directions, would be consistent with
the existence of enhanced ferromagnetic as well as
antiferromagnetic spin fluctuations [56, 57]. This could lead
to the existence of two quasi-critical fields and to a state that
is more inhomogeneous than expected in the presence of
ferromagnetic fluctuations alone. We also note that such a
Fermi surface model can lead to a first order transition to
ferromagnetism at sufficiently small lattice density and to a
phase diagram of the form shown in Fig. 6 [54–57]. A more
recent example in which these effects may be important is
reported in Ref. [58] and these proceedings.
www.pss-b.com
6 Additional phase transitions A study of the
simplest d-electron metals reveals that the border of
ferromagnetism appears to be characterized by a multiplicity
of quasi-critical fields and potentially a multiplicity of phase
transitions (Fig. 6). The border of ferromagnetism, and also
of ferroelectricity as suggested at the end of x2, can thus be
more intriguing than was generally envisaged in the early
work on quantum critical phenomena. The occurrence of a
multiplicity of quantum critical fields is not limited to the
problems that we have considered but appears to be a
recurrent theme in the study of quantum phase transitions in
general.

For instance, the case of high Tc cuprates is thought to
involve a plethora of neighbouring phases, including
antiferromagnetism, electron nematic order, d-wave super-
conductivity and perhaps multiple quantum liquid states on
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the border of Mott transitions. The f-electron heavy-fermion
systems can also exhibit analogous remarkable phenomena
on the edge of f-electron localization. A number of systems
on the border of electron localization are discussed in this
volume. The diverse views reported on the nature of f-
electron heavy fermion systems related in part to the
magnetic metals discussed here can be inferred for example
from Refs. [29–30, 66–77]. The f-electron systems display
not only a multiplicity of quantum critical fields, but also
show evidence of scaling behaviours not expected in terms of
the early models of quantum critical phenomena (see, e.g.,
[78–80]).

Detailed examinations of quantum phase transitions
require scans of broad regions of phase space by the precise
and painstaking control of tuning parameters including
temperature, pressure, magnetic field, electric field and
materials properties. A recent example of the utility of such
phase space exploration in uncovering unconventional
phenomena is provided by the observation in SrFe2As2 and
BaFe2As2 of pressure-induced superconductivity with Tc of
up to �30 K (the highest reported, up to the time of dis-
covery, in any material not superconducting at ambient
pressure) [81]. An automated cryogen-free measurement
system that may help to facilitate studies of quantum phase
transitions and the search for novel phenomena in the future
is illustrated in our concluding figure (Fig. 7). This system,
which is currently under development, allows the tempera-
ture to be changed between room temperature and the low
millikelvin range with built-in pressure and magnetic field
control technology. This allows the option of varying the
pressure in situ with a diamond anvil cell at low temperatures.
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