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1. trTDTS measurements

Equilibrium optical properties

In Fig. S1a, we present the temperature-dependent broadband reflectivity of Sr14Cu24O41, previously

reported in [1]. Using Kramers-Kronig relations, we obtained the real (σ1) and imaginary (σ2) parts of the

optical conductivity, shown in Fig. S1b and c, respectively. The spectra indicate an insulating state at 100

K, which becomes progressively more conducting with increasing temperature, as evidenced by the enhanced

low-frequency spectral weight in σ1. These observations indicate a gapped charge-ordered ground state with

an onset below TCO = 250 K, consistent with previous reports [1–3].
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Fig. S1. Equilibrium optical properties. a, Broadband equilibrium reflectivity, and b, real (σ1) and
c, imaginary (σ2) parts of the optical conductivity, as a function of temperature. d, Broadband equilibrium
reflectivity, and e, real (σ1) and f, imaginary (σ2) parts of the optical conductivity, as a function of temper-
ature, within the frequency range of our time-resolved time-domain THz spectroscopy measurements.
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By closely examining σ1, we note that the charge order gap remains unchanged with temperature. This

behavior is in contrast to σ1 in the light-induced metastable phase (see Fig. 2d of the main text), which

exhibits a suppressed charge order gap of the order of 10 meV. Notably, the charge order gap exhibits a

similar suppression when Sr14Cu24O41 is substituted with Ca, as reported in [2] and reproduced in Fig. S2.

The metastable state in our measurements exhibits a gap that is intermediate between that of the x = 3

and x = 9 compounds.
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Fig. S2. Charge order gap as a function of Ca substitution. The charge order gap extracted from
DC transport measurements, as a function of Ca substitution x in Sr14−xCaxCu24O41, reproduced from [2].
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trTDTS: Fit functions and parameters

We model the transient reflectivity in Fig. 2b of the main text by an exponential decay, with a functional

form given by

R(t) = R0 +
1

2

[
1 + erf

(
t− t0
τ0

)]
Ae

−
(

t−t0
τ1

)
, (1)

where R0 is the reflectivity at equilibrium, t0 is an arbitrary temporal offset, and τ1 is an exponential

decay time constant. The error function term describes the initial enhancement of reflectivity upon pump

excitation, characterized by a time constant τ0. The fit parameters are shown in Table 1.

Table 1. Fit parameters in Fig. 1c.

R0 t0 (ps) τ0 (ps) τ1 (ns) A

ω = 15 meV 0.372(4) 0.01(2) 0.57(5) 2.6(5) 0.383(4)
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2. trXRD measurements

Fit functions and parameters

The data in Fig. 3b of the main text are obtained by fitting and subtracting a fluorescent background. We

detail this procedure here. In Fig. S3, we show the equilibrium and transient reciprocal space scans of the

charge order diffraction peak in our time-resolved x-ray diffraction (trXRD) measurements. The charge order

peak occurs over a large fluorescent background. We model these data by the sum of a linear function and

a Gaussian, which describe the fluorescent background and charge order diffraction peak, respectively. The

functional form is

I(L) = G(L;A,L0, σ) + aL+ b. (2)

Here, I is the intensity, and L is the momentum transfer along c. G(L;A,L0, σ) is a Gaussian function

G(L;A,L0, σ) =
A

σ
√
2π
e−

(L−L0)2

2σ2 , (3)

where A is the amplitude, L0 is the center, and σ is the width. The fit parameters are shown in Table 2. We

subtract the fluorescent background shown in Fig. S3a-b to obtain the background-subtracted data in Fig.

S3c and Fig. 3b of the main text.

Table 2. Fit parameters in Fig. 3b and Fig. S3.

A (a. u.) L0 (r. l. u.) σ (r. l .u) a (cL) b (a. u.)

Equilibrium 5.3(2) 0.2018(4) 0.0118(4) -0.136(8) 0.056(1)
Transient 2.8(1) 0.2017(4) 0.0103(5) -0.133(6) 0.056(1)

As described in the main text, the charge order peak center (L0) and width (σ) remain unchanged. To

show that this is representative of the charge order peak at all time delays within the metastable phase, we

measured time traces at different momenta. We overlay the equilibrium and transient peaks, normalized to

their peak intensities, in Fig. S4a. There is no resolvable change in the charge order peak center or width,

consistent with our fit parameters in Table 2. Next, we plot the time traces of the transient charge order
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Fig. S3. Background subtraction in trXRD data. a-b, Equilibrium (a) and transient (b) time-
resolved x-ray diffraction at the charge order peak, measured resonant with the O K-edge. The fluorescent
background is denoted by dashed grey lines. c, Diffraction data from panels a and b with the fluorescent
background subtracted. Solid lines denote fits.

intensity at two different momenta, namely at L = 0.200 and 0.216. The intensities at both momenta exhibit

a step-like suppression.

We model the time delay traces by an error function given by

I(t) = I0 −
1

2
A

[
1 + erf

(
t− t0
τ0

)]
, (4)

where τ0 describes the timescale of pump-induced charge order suppression convolved with the pump-probe

autocorrelation, I0 is the magnitude of the initial charge order intensity, A is the magnitude of charge order

suppression, and t0 is an arbitrary temporal offset. The fit parameters are shown in Table 3. The absence of

subsequent dynamics in the metastable phase shows that the charge order peak profile remains unchanged

after the initial suppression.

Table 3. Fit parameters in Fig. S4

I0 A (norm.) t0 (ps) τ0 (ps)

L = 0.200 1.00(1) 0.40(1) 0.11(2) 0.21(3)
L = 0.216 0.46(1) 0.14(1) 0.01(2) 0.10(3)
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Fig. S4. Temporal evolution of the charge order peak. a, Momentum dependence of the charge order
peak measured by trXRD at equilibrium and at a time delay of 3 ps, normalized, rescaled, and overlaid on
each other. b, The charge order intensity as a function of time delay, at two fixed momenta, namely L =
0.200 (light blue) and 0.216 (purple). The data are presented as mean values, and the error bars are given
by the standard deviation of 35 datapoints measured at 255 K, where the CDW peak vanishes.

We fit the delay traces in Fig. 3c of the main text by the same function as above. We evaluate the time

constant τ0 of charge order suppression to be 0.19(3) ps. The fit parameters are listed in Table 4.

Table 4. Fit parameters in Fig. 3c.

I0 A (norm.) t0 (ps) τ0 (ps)

Epump ∥ a 1.00(1) 0.421(7) 0.01(4) 0.19(3)
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Fluence dependence of light-induced charge order suppression

We measure the charge order response as a function of pump fluence, with Epump ∥ a, as shown in Fig. S5.

We find that the light-induced charge order suppression exhibits no recovery up to nanosecond timescales,

independent of the incident fluence.

5.2 mJ/cm2

7.8 mJ/cm2

0 mJ/cm2

L = 0.2

Fig. S5. Fluence dependence of charge order suppression. The light-induced charge order suppression
is metastable up to nanosecond timescales, independent of the incident fluence. The data are presented as
mean values, and the error bars are given by the standard deviation of 11 datapoints measured at negative
time delays. Solid lines denote fits.

We fix τ0 to the same value as in Table 3 and fit the data in Fig. S5. The fit results are shown in Table 5.

Table 5. Fit parameters in Fig. S4.

A (norm.) t0 (ps) τ0 (ps)

5.2 mJ/cm2 0.22(1) 0.1(2) 0.19 (fixed)
7.8 mJ/cm2 0.421(7) 0.01(4) 0.19 (fixed)
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3. trXAS measurements at Cu L-edge

Equilibrium XAS as a function of Ca substitution

The primary effect of Ca substitution in Sr14−xCaxCu24O41 is the transfer of holes from chain to ladder

subunits. This hole transfer presents a characteristic signature in the Cu L-edge x-ray absorption spectra

(XAS), as shown in Fig. 4d of the main text. Here, we provide a detailed account of the Cu L-edge XAS as

a function of Ca substitution at equilibrium. In Fig. S6, we reproduce the XAS measured on the x = 0 and

x = 11.5 compounds, previously reported in [4]. The two spectral features in Fig. S6 can be distinguished

based on the local bonding environment, as outlined in the main text. The peak centered at 932.7 eV consists

of contributions primarily from the corner-shared ladder, while the peak centered at 934.4 eV is from the

edge-shared chain [5]. We model the two-peaked spectra by the sum of two Lorentzians and a linear function

as

I(ω) = L(ω;A1, ω01, σ1) + L(ω; , A2, ω02, σ2) + aω + b, (5)

where the Lorentzians L(ω;Ai, ω0i, σi) describe ladder (i = 1) and chain (i = 2) peaks. The Lorentzian

function is given by

L(ω;A,ω0, σ) =
A

π

[
σ

(ω − ω0)2 + σ2

]
, (6)

where A, ω0, and σ are the amplitude, center energy, and linewidth parameters. The fit parameters are

shown in Table 6.

Table 6. Fit parameters in Fig. S6 and Fig. 4d.

A1 (norm.) ω01 (eV) σ1 (eV) A2 (norm.) ω02 (eV) σ2 (eV)

x = 0 2.34(4) 932.650(5) 0.81(1) 1.19(3) 934.398(8) 0.69(2)
x = 11.5 2.70(4) 932.650(5) 0.90(1) 0.88(3) 934.42(1) 0.65(2)

We observe a reshaping of the XAS spectrum due to chain-to-ladder hole transfer in the form of a

suppression of the amplitude A2 of the chain peak and an enhancement of the amplitude A1 of the ladder

peak as a function of Ca substitution x.
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Fig. S6. Cu L-edge XAS as a function of Ca substitution. The static Cu L-edge x-ray absorption
spectra (XAS) as a function of Ca substitution x in Sr14−xCaxCu24O41, extracted from [4]. The top panel
shows the raw spectra and the bottom panel shows the difference between the x = 0 and x = 11.5 spectra.
Solid lines are fits, as described in the text.

We further show that the spectral reshaping is linear with respect to the Ca substitution x. In Fig. S7, we

plot the XAS spectra as a function of x, previously reported in [5], focusing on the well-defined suppression

in the high-energy peak associated with the chain. We observe that the suppression is monotonic and linear

in x, as shown in Fig. S7c. Given that the magnitude of chain-to-ladder hole transfer varies linearly with x

[4–7], the magnitude of the spectral reshaping is linear with respect to p.

Finally, we confirm our interpretation of the spectral reshaping using density functional theory (DFT)

calculations. We calculated the Cu L-edge XAS spectrum for isolated ladder and chain subunits, as outlined

in the Methods. We first examine the spectra corresponding to the equilibrium state, where the ladder hole

density is p = 0.06/CuL. The ladder XAS spectrum shown in Fig. S8a features a sharp peak and a continuum

at higher energies. The chain XAS spectrum in Fig. S8b is somewhat broader and much weaker than the

ladder one. Next, we examine the calculated spectra corresponding to the light-induced metastable state,

10



I XA
S (

no
rm

.)
∆I

XA
S (

no
rm

.)

∆I
XA

S (
no

rm
.)

a

b

c

x (Ca doping)

XAS measurements (Ref. 5)

Fig. S7. Linearity of XAS response to Ca substitution. a, The static Cu L-edge x-ray absorption
spectra (XAS) as a function of Ca substitution x in Sr14−xCaxCu24O41, extracted from [5]. b, The difference
spectra with respect to the x = 0 spectrum in panel (a). c, The difference intensity at 934.4 eV, denoted by
the arrow in panel (b), is plotted as a function of Ca substitution x. The dashed line is a guide to the eye.

with ladder hole density p = 0.09/CuL. The sharp peak in the ladder XAS signal exhibits an increase in

intensity and a small red shift, whereas the intensity of the chain XAS peak is strongly suppressed. These

spectral changes are consistent with the addition of Cu 3d holes on the ladder and the reduction of of Cu 3d

holes on the chain. These results are in agreement with our assignment of the experimental peaks and their

reshaping upon chain-to-ladder hole transfer. Finally, we note that since our calculation consists of isolated

chains and ladders with different total charges (and the ensuing background charge compensation), the

relative energy offset between the chain and ladder spectra cannot be determined theoretically. To overcome

this limitation, we estimate the appropriate energy offset from the available experimental data (Fig. S6).

Our XAS data and previous XAS measurements at the Cu L edge in the presence of Ca dopant ions define

the energy positions of the ladder and chain peaks, respectively, with an energy separation of 1.6 eV. We

apply the same offset to our simulated equilibrium and pumped spectra. Summing the ladder and chain

spectra (Fig. S8c), we find that the calculated XAS are consistent with the experimental XAS at equilibrium,
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a b c

Fig. S8. Spectral decomposition of Cu L edge XAS calculated by DFT. Density functional theory
(DFT) calculation of the Cu L-edge x-ray absorption spectra (XAS) of a, the ladder subunit and b, the
chain subunit, for ladder hole densities p = 0.06/CuL and 0.09/CuL. c, The sum of the spectra in panels (a)
and (b).

reproducing both the suppression of the high-energy peak associated with the chains and the enhancement

of the low-energy shoulder of the peak associated with the ladders.
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trXAS measurements

We model the trXAS spectra in Fig. 3a-b of the main text using the same functional form as in Eq. 5 and

6. The fit parameters are shown in Table 7.

Table 7. Fit parameters in Fig. 3a-b

A1 (norm.) ω01 (eV) σ1 (eV) A2 (norm.) ω02 (eV) σ2 (eV)

Equilibrium 1.88(3) 932.611(5) 0.73(1) 1.18(3) 934.333(8) 0.74(2)
Transient 1.95(3) 932.600(5) 0.75(1) 1.26(4) 934.32(1) 0.83(2)

Next, we present the temporal evolution of the trXAS results described in Fig. 4 of the main text.

The delay traces at energies fixed to 932.0 eV and 934.4 eV, corresponding to the ladder and chain peaks,

respectively, are presented in Fig. S9a. The data show that the light-induced reshaping of the trXAS spectra

has a short-lived initial response, followed by a long-lived metastable response. We model the time dependence

using the following functional form:

I(t) =
1

2

[
1 + erf

(
t− t0
τ0

)] [
B0 +B1e

(t−t0)
τ1

]
, (7)

where τ0 describes the timescale of the pump-induced response convolved with the pump-probe auto-

correlation, B0 is the magnitude of the metastable response, B1 and τ1 are the amplitude and decay time

constant of the short-lived response, respectively, and t0 is an arbitrary temporal offset. Fitting the delay

traces in Fig. S9a, we obtain the fit parameters listed in Table 8.

Table 8. Fit parameters in Fig. S8a

t0 (ps) τ0 (ps) B0 (norm.) B1 (norm.) τ1 (ps)

Ladder 0.02(2) 0.13(3) 0.123(6) 0.267(4) 0.33(8)
Chain 0.1(1) 0.2(1) 0.125(2) 0.10(3) 0.50(1)

The primary light-induced effect is the transient activation of the apical hopping pathway and the result-

ing metastable chain-to-ladder hole transfer, which we observe as the long-lived response in our trXAS delay

traces. We additionally observe a short-lived signal at both the ladder and chain resonances. Since the pump
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photon energy (1.55 eV) is close to the charge transfer gap of the ladder (2 eV) [6], we posit that a fraction

of the pump photons additionally generates holon-doublon pairs, giving rise to the observed short-lived sig-

nal. The amplitude of this signal is smaller at the chain resonance, consistent with the larger chain charge

transfer gap (3 eV) [6]. Interestingly, we do not observe a prominent short-lived signal in the trTDTS (Fig. 2)

and trXRD (Fig. 3) delay traces, suggesting that the charge order does not exhibit a comparable short-lived

response. This discrepancy in the fast dynamics remains an open question.

Finally, we present the field dependence of the light-induced reshaping of the trXAS spectra. In Fig.

S9b, we plot the normalized response in the metastable state (t = 3 ps) as a function of the square of

the pump field, with the energies fixed at 932.0 eV (ladder) and 934.4 eV (chain). The response scales

linearly with the square of the pump field, as indicated by the dashed line, consistent with the light-induced

symmetry-breaking mechanism outlined in the main text and SI Section 7.

Chain
Ladder

t = 3 ps

a b

Epump
2 (MV2/cm2)

Fig. S9. Temporal evolution and pump field dependence of trXAS spectra. a, Traces of the
temporal evolution at fixed energies, 932.0 eV (labeled ‘Ladder’) and 934.4 eV (labeled ‘Chain’). Fits are
denoted by solid lines. The short-lived and long-lived components are shaded in grey and blue, respectively.
b, The normalized response as a function of the pump field at a time delay of 3 ps. The data are presented as
mean values, and the error bars are given by the standard deviation of 10 datapoints measured at negative
time delays. The dashed line is a guide to the eye.
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4. trXAS measurements at O K-edge

We first examine the equilibrium O K-edge x-ray absorption spectra (XAS) as a function of Ca substitution

for x = 0 and x = 11.5 (see Fig. S10), which we reproduce here from Ref. [4]. The spectra consist of two

primary features: a peak centered at 528.2 eV, corresponding to the doped holes, also referred to as the

Zhang-Rice singlet (ZRS) peak, and a peak centered at 529.5 eV, corresponding to the upper Hubbard

band (UHB). In cuprates, an increase in the overall hole density is generally associated with a suppression

of the UHB and an enhancement of the ZRS [8]. While chain and ladder contributions to the O K-edge

XAS cannot be unambiguously distinguished (unlike what is observed at the Cu L-edge) due to overlapping

spectral features, previous studies have established clear qualitative trends associated with chain-to-ladder

hole transfer [4], which we summarize below.
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Fig. S10. O K-edge XAS as a function of Ca substitution. a, The static O K-edge x-ray absorption
spectra (XAS) as a function of Ca substitution x in Sr14−xCaxCu24O41 for x-rays polarized along a, extracted
from [4]. b, The difference between the x = 0 and x = 11.5 spectra shown in panel a. c-d, Same as panels
a-b, for x-rays polarized parallel to c. Lines are a guide to the eye.
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With x-rays polarized parallel to a, the ZRS and UHB are both suppressed with increasing chain-to-

ladder hole transfer. With x-rays polarized parallel to c, the ZRS features an additional peak centered at

528.7 eV that is attributed to holes in the ladder subunit. Hence, chain-to-ladder hole transfer in this case

causes an enhancement of the ZRS together with a suppression of the UHB.

Finally, we note that the UHB exhibits a significant blue shift with increasing Ca substitution, for both

x-ray polarizations. The UHB of the ladder and chain subunits overlap in energy [4]. If hole transfer were to

shift the UHB, the ladder and chain contributions would shift in opposite directions since holes are added

to the former and subtracted from the latter. This would manifest as a broadening of the UHB with Ca

substitution x, rather than a blue shift. The blue shift is more naturally explained in terms of the structural

changes that occur when 82% of the Sr atoms are replaced by Ca. The most dominant of these is along the

b direction. Ca substitution (x = 12) causes a decrease of the overall lattice parameter b by 7% [Ammerahl],

and increases distortions of the ladder O atoms along b by a factor of 10 [9]. The latter in particular would

modify the local bonding environment and hence influence the O K-edge XAS peak positions.

Hence, we expect that light-driven chain-to-ladder hole transfer, which occurs without the structural

distortions associated with Ca substitution, will manifest in the form of the spectral reshaping described

above but without the additional blue shift of the UHB.
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Fig. S11. O K-edge trXAS. a, Equilibrium (black) and transient (red) OK-edge x-ray absorption spectra
(XAS) at pump-probe delay t = 3 ps, for x-rays polarized along a. b, Difference between equilibrium and
transient XAS intensities. c, Change in static XAS intensity due to chain-to-ladder hole transfer induced
by Ca substitution in Sr14−xCaxCu24O41, derived from reference [4]. The data show the difference between
XAS measured on the x = 0 and x = 11.5 compounds, which corresponds to a charge transfer of ∆p = 0.06
holes/CuL. d-f Same as panels a-c, for x-rays polarized parallel to c.

We show the results of our O K-edge trXAS measurements (pump polarization parallel to c in all

measurements) in Fig. S11. Note that the pump fluence of 3.9 mJ/cm2 used in these measurements is half

that used for the Cu L-edge trXAS measurements. The transient spectrum with x-ray polarization E ∥ a

exhibits a reshaping with both the ZRS and UHB suppressed relative to the equilibrium spectra, consistent

with our expectations for chain-to-ladder hole transfer. The difference spectrum in S11b is in excellent

agreement with the difference spectrum due to Ca substitution in Fig. S11c, rescaled by by a factor of 4. This

corresponds to a hole transfer of 0.06/4 = 0.015 holes/CuL. For x-ray polarization E ∥ c, shown in Fig. S11d,
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we observe a suppression of the UHB and an enhancement of the ZRS, consistent with a chain-to-ladder

hole transfer without the structural distortions associated with Ca substitution. The lack of signatures of

structural distortions in the light-induced hole transfer implies that light-induced doping is distinct from

that due to Ca substitution at equilibrium.

We plot the temporal evolution of the O K-edge trXAS spectra in Fig. S12. While both polarizations

and resonances exhibit the metastable component due to chain-to-ladder hole transfer, the short-lived signal

assigned to holon-doublons is only prominent in the E ∥ a spectrum at the ZRS.

E // a E // c

ZRS

UHB

ZRS

UHB

a

b

c

d

Fig. S12. Temporal evolution of O K-edge trXAS spectra. a-b, Traces of the temporal evolution
at fixed energies, 528.0 eV (labeled ‘ZRS’) and 529.7 eV (labeled ‘UHB’), for x-rays polarized parallel to
a. c-d, Traces of the temporal evolution at fixed energies, 528.4 eV (labeled ‘ZRS’) and 529.7 eV (labeled
‘UHB’), for x-rays polarized parallel to c.

In summary, our O K-edge trXAS measurements corroborate the chain-to-ladder hole transfer detected

and quantified by our Cu L-edge trXAS measurements described in the main text.
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5. trRIXS measurements

Triplon excitations

The ladder subunit of Sr14Cu24O41 is composed of spin singlets. The fundamental magnetic excitations of

this system are dispersive singlet-to-triplet excitations known as ‘triplons,’ shown schematically in Fig. S13.

The symmetry of the ladder geometry implies that sectors of even and odd triplon number do not mix in

the RIXS spectra, due to different parity with respect to reflection about the center of the ladder legs. In

particular, with H = 0, as in our measurements, we only detect excitations with an even triplon number,

which are dominated by the two-triplon continuum. We note that the inclusion of doped holes in the ladder

disrupts the singlet background (see Fig. S13) and reduces the overall triplon scattering intensity, as discussed

in the main text.

doped hole

singlet triplet
a

c

Fig. S13. Triplon excitation Schematic of dispersing singlet-to-triplet excitations called ‘triplons.’ The
black arrows represent spins, grey circles represent doped holes, grey clouds represent spin singlets, and the
blue cloud represents a spin triplet excitation.

Subtraction of elastic peak

The Cu L-edge RIXS spectra of Sr14Cu24O41 consist of an elastic peak at zero energy loss, a phonon centered

at 60 meV, triplons dispersing up to 400 meV for finite L, and dd orbital excitations above 1.3 eV. Due to the

combined energy resolution of our spectrometer, the elastic and phonon peaks cannot be distinguished from

each other. We also note that for π incident x-rays, as in our measurements, the phonon scattering intensity

is much weaker than the elastic and spin-flip magnetic excitations. Given these two conditions, we assume

that the convolution of the elastic and phonon peaks is approximately symmetric about zero energy loss. We
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fit the low-energy shoulder of this contribution to a Gaussian peak and subtract it from our RIXS spectra

to isolate the magnetic scattering intensity below 1 eV. We assume that any residual contribution from the

phonon is negligible compared to the magnetic excitations, especially away from the zone center (L = 0).

L = 0

0.05

0.10

0.20

0.25

0.16

equilibrium transient elastic subtracted

Energy loss (eV) Energy loss (eV)

equilibrium
transient
difference

elastic

a b

t = 0.2 ps

Fig. S14. Raw trRIXS spectra at t = 0.2 ps. a, Equilibrium and transient time-resolved resonant
inelastic x-ray scattering (trRIXS) spectra as a function of momentum L, at pump delay t = 0.2 ps, normal-
ized to the total intensity of dd excitations. The elastic component is denoted by the dashed black line. b,
trRIXS spectra with the elastic components subtracted. The difference between equilibrium and transient
spectra is shown in grey. The data are presented as mean values, and error bars are estimated as the square
root of the raw intensity counts, assuming Poisson statistics.

We implement this elastic peak subtraction separately for the equilibrium and transient spectra at each

measured momentum L and pump delay t. In Fig. S14, we show our results for trRIXS spectra measured as

a function of L with t fixed to 0.2 ps. In Fig. S14b, we show the spectra with the elastic peak subtracted.
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In Fig. S15, we show the corresponding results for the L-dependent trRIXS spectra at t = 3 ps, and in Fig.

S16, the corresponding results for the t-dependent trRIXS spectra at L = 0.25.

L = 0

0.05

0.10

0.20

0.25

equilibrium transient elastic subtracted

Energy loss (eV) Energy loss (eV)

equilibrium
transient
difference

elastic

a b

elastic t = 3 ps

Fig. S15. Raw trRIXS spectra at t = 3 ps. a, Equilibrium and transient time-resolved resonant inelastic
x-ray scattering (trRIXS) spectra as a function of momentum L, at pump delay t = 3 ps, normalized to
the total intensity of dd excitations. The elastic component is denoted by the dashed black line. b, trRIXS
spectra with the elastic components subtracted. The difference between equilibrium and transient spectra is
shown in grey. The data are presented as mean values, and error bars are estimated as the square root of
the raw intensity counts, assuming Poisson statistics.
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Fig. S16. Raw trRIXS spectra at L = 0.25. a, Equilibrium and transient time-resolved resonant
inelastic x-ray scattering (trRIXS) spectra as a function of pump delay t, at momentum L = 0.25, normalized
to the total intensity of dd excitations. The elastic component is denoted by the dashed black line. b, trRIXS
spectra with the elastic components subtracted. The difference between equilibrium and transient spectra is
shown in grey. All spectra are normalized to the total intensity of dd excitations. The data are presented as
mean values, and error bars are estimated as the square root of the raw intensity counts, assuming Poisson
statistics.
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Extracting trS(q, ω) from trRIXS spectra

To extract the dynamical spin structure factor S(q, ω) from the RIXS spectra, we first subtract the non-

magnetic components of the scattered signal, as outlined in the previous section. Next, we normalize the

subtracted RIXS spectra by scaling them by a geometry-dependent factor to ensure the total integrated

intensity of the orbital excitations matches the theoretical single-ion scattering cross-section calculated using

exact diagonalization (ED) [10]. We do this by considering orbital excitations of a Cu2+ ion in a square-

planar crystal field, neglecting spin-flip and phonon contributions. In this section, x, y, and z are parallel to

the crystallographic a, c, and b directions, respectively. We fix the crystal field parameters by matching the

theoretical spectra to the experimental orbital excitation energies, and obtain Dq = 0.164 eV, Ds = 0.42

eV, and Dt = 0.19 eV. In Fig. S17a-b, we show the experimental and calculated RIXS spectra as a function

of momentum L. The integrated intensity of orbital excitations is plotted as a function of the incident angle

θ in Fig. S17c. We multiply the experimental spectra in Fig. S17a by a θ-dependent factor to match this

dependence within an overall scale factor. We refer to these spectra as the ‘normalized RIXS spectra.’

Finally, we extract S(q, ω) as follows. The RIXS magnetic excitation signal is proportional to S(q, ω)

multiplied by the form factor of the single-ion spin-flip scattering cross-section, Rspin(ϵ, ϵ
′,Ωi), where Ωi is

the excitation energy and ϵ and ϵ′ are the polarizations of incident and scattered photons [11, 12]

Ispin ∝ Rspin(ϵ, ϵ
′,Ωi)× S(q, ω). (8)

Even though this formalism does not account for hole doping, its validity for doped systems within the energy

range of magnetic excitations has been verified in Ref. [13]. We calculate Rspin for a hole in a dx2−y2 orbital

with its spin oriented in-plane along [1, 0, 1], following the approach in previous publications [11, 14]. The

results are plotted in Fig. S17d. We obtain S(q, ω) up to an overall scaling factor by dividing the normalized

RIXS spectra by Rspin. We apply these steps to both the equilibrium and transient RIXS spectra, subtracting

them to obtain the time-resolved S(q, ω) spectra shown in Fig. 5 of the main text.
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Fig. S17. ED calculations to extract S(q, ω) from RIXS. a, Equilibrium resonant inelastic x-ray
scattering (RIXS) spectra as a function of momentum L, normalized to the total intensity of dd excitations. b,
Orbital excitation spectra calculated using exact diagonalization (ED) for π-polarized x-rays. c-d, Integrated
orbital excitation scattering cross-section (c) and spin-flip cross-section (d) as a function of incident angle θ.

Temporal evolution of trS(q, ω)

Here, we expand upon the results presented in Fig. 5 of the main text and show the temporal evolution

of the two-triplon continuum in Fig. S18. At longer timescales, the intensity reduction is fully captured by

the metastable hole transfer, as confirmed by the agreement with DMRG calculations (Fig. S18b). However,

at shorter timescales, the magnetic signal exhibits a much stronger suppression, which recovers on a sub-

picosecond timescale. This behavior mirrors the time evolution of the trXAS spectra (Fig. S9a), tentatively

assigned to short-lived photoinduced holon-doublons within the ladders, as detailed in Section 3.
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Fig. S18. Temporal evolution of two-triplon continuum. a, S(q, ω, t) at q = 0.25 in (grey) and out of
equilibrium (black) for selected time delays. After an initial suppression and a partial recovery attributed to
short-lived photo-induced holon-doublons, the two-triplon continuum exhibits a residual metastable intensity
suppression. b, DMRG calculation of S(q, ω) for p = 0.06 (grey, equilibrium) and p = 0.09 (black, transient).
The calculated two-triplon suppression matches that observed in the trRIXS spectra at long timescales.
c, Time-dependent differential two-triplon intensity ∆I/IS(q,ω) as a function of time delay. The data are
presented as mean values, and error bars are estimated as the square root of the raw intensity counts,
assuming Poisson statistics. Sketches of the chain-to-ladder hole transfer and the consequent disruption of
short-range spin correlations are shown in the bubbles. Arrows denote spins, yellow circles denote holes, and
the grey clouds indicate rung singlets.
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6. DMRG calculations

To identify spectral fingerprints of hole doping, we employ the density matrix renormalization group (DMRG)

to simulate the dynamical spin structure factor S(q, ω) in a two-leg ladder system. The system length is

chosen as L = 64. Based on the quantitative experiment-theory comparisons in Ref. [15], this ladder system

can be faithfully described by a single-band extended Hubbard model, with its Hamiltonian given by:

H = −
∑
jlσ

t
[
c
(l)†
jσ c

(l)
j+1σ + h.c.

]
−
∑
jσ

t⊥
[
c
(0)†
jσ c

(1)
jσ + h.c.

]
−
∑
jlσ

t′
[
c
(l)†
jσ c

(1−l)
j+1σ + h.c.

]
+U

∑
jl

n
(l)
j↑n

(l)
j↓ + V

∑
j

∑
σ,σ′

[
n
(0)
jσ n

(1)
jσ′ +

∑
l

n
(l)
jσn

(l)
j+1σ′

]
, (9)

where c
(l)
jσ (c

(l)†
jσ ) annihilates (creates) an electron at site j on leg l = 0, 1 with spin σ =↑, ↓, and n(l)jσ = c

(l)†

jσ c
(l)
jσ

denotes the local electron density. Here, t is the hopping integral between nearest neighbors along the leg,

t⊥ = 0.84t is the hopping along the rung, and t′ = −0.3t is the next-nearest neighbor hopping. The on-site

Hubbard repulsion is U = 8t, and the nonlocal, likely phonon-mediated, attractive interaction is V = −1.25t

[15–17]. In this particular system, we find that a maximum bond dimension D = 1000 gives truncation error

magnitudes on the order of 10−7.

The dynamical spin structure factor S(q, ω) is

S(q, ω) =

∫ Tmax

0

dt
∑
j

∑
l=0,1

〈
G
∣∣∣U(0, t)S(l)

j U(t, 0)S(0)
j0

∣∣∣G〉 eiqje−iωte−t2/t2win . (10)

Here, S
(l)
j =

[
c
(l)†
j↑ c

(l)
j↑ − c

(l)†
j↓ c

(l)
j↓
]
/2 is the spin operator at site j on leg l, and U(t1, t2) is the time-evolution

operator. To minimize boundary effects and enforce translational symmetry, the middle site j0 = L/2 is

fixed, and the sum in Eq. (10) runs over all site indices j. The two-time correlation function is evaluated

using the time-dependent variational principle (TDVP), with a step size δt = 0.05t−1 and a maximum time

Tmax = 30t−1. The finite-time Fourier transform is applied using a Gaussian window function with the

parameter twin = 300t−1.
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Fig. S19. S(q, ω) calculated by DMRG. a-d, S(q, ω) intensity maps for ladder hole densities, from p
= 0.0625/CuL to p = 0.1093/CuL, calculated using DMRG. e, S(q, ω) spectra as a function of momentum
L, for p = 0.0625/CuL and p = 0.0938/CuL, broadened to match the experimental energy resolution of 260
meV. The difference between the two spectra is shown in grey.

To account for the self-doping at equilibrium, a hole density p = 0.0625/CuL is set as the reference, with

additional hole doping and impurities introduced relative to this. As shown in Fig. S19a, the spectrum with

hole density p = 0.0625/CuL is most intense for the two-triplon continuum between 0.2 and 0.4 eV. A lower

excitation branch, originating from quasiparticle spin-flips, is visible between 0.05 and 0.15 eV [7, 15, 18–21].

Variation of S(q, ω) with hole doping

To quantify the photoinduced doping in the metastable state, we examine the S(q, ω) obtained for hole

densities of p = 0.0781/CuL, 0.0938/CuL, and 0.1093/CuL (see Fig. S19b-d). With increasing hole density,

the spin spectral weight transfers from the two-triplon continuum to the quasiparticle branch.

To enable comparison with the experimental results (Fig. 5 of the main text), we convolve the simulated

spectra with a Gaussian broadening, matching the experimental energy resolution of 260 meV. We present
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the convolved spectra with p = 0.0625/CuL and p = 0.0938/CuL as a function of momentum in Fig. S19e.

Hole doping results in a broadening and slight red shift of the two-triplon intensity at L > 0.10. This

manifests as a slight suppression of the peak intensity and a slight increase at the shoulders, as shown in

the difference plots (filled grey area). At larger doping, such as in p = 0.1093/CuL, we find a significant

suppression of the two-triplon continuum and transfer of spectral weight to the quasiparticle branch, which

is inconsistent with the experimental observations (see Fig. S15 and Fig. 5 of the main text). Thus we find

that p = 0.0938/CuL offers the best agreement with the experimental S(q, ω) in the metastable state.

Effect of hole localization

To determine whether the observed metastable state is associated with itinerant or localized holes, we

simulate S(q, ω) for p = 0.0938/CuL with a local charge impurity (see Fig. 5d). To do this, we impose an

additional chemical potential shift ∆µ = 5t that is strong enough to localize the doped holes. We apply

the localization potential at site (l = l1, j = j1) near the reference point (l = 0, j = j0), using the same

convention as in Eq. (10). The modified Hamiltonian is written as

H′(l1, j1) = H+∆µ
[
n
(l1)
j1↑ + n

(l1)
j1↓

]
. (11)

We consider three inequivalent impurity locations: at sites (1, j0) (type 1), (0, j0 ± 1) (type 2), and

(1, j0 ± 1) (type 3), as shown schematically in Fig. S20. The experimental S(q, ω) in the metastable state

shows a suppression centered at the two triplon peak, spanning the continuum, and without changing the

shape of the dispersion (see Fig. 5d of the main text). The simulated S(q, ω) with hole localization deviates

from this for all three impurity types. For impurity type 1, spectral weight is significantly suppressed at

L = 0.25 and transferred to lower momenta within the two triplon continuum. Impurity type 2 shows an

even stronger suppression of the two triplon spectral weight, by almost a factor of two, transferred into the

quasiparticle branch at lower energy loss. Impurity type 3 results in a similar redshift of spectral weight as

type 2, albeit with a lower magnitude. In all cases, the suppression of the two-triplon continuum is much larger

than observed in the experimental S(q, ω). Finally, to reflect the statistical average of randomly distributed
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Fig. S20. Spectral analysis for different localized hole configurations. a-c The S(q, ω) calculated
for hole density p = 0.0938/CuL for three different impurity configurations. The upper schematics illustrate
the position of the impurity site (gray dot, (l1, j1)) relative to the reference site (white dot, (0, j0)) for each
of the three impurity configurations. d-f Differential intensities ∆S(q, ω) compared to the S(q, ω) of the
reference state with p = 0.0625/CuL (shown in Fig. S17a) for each of the three impurity configurations.

impurities, we calculate a weighted average of these data based on the symmetry and equivalence of the

sites. This weighted average, presented in Fig. 5d of the main text, similarly deviates from the experimental

observations. Therefore our experimental results are consistent with holes transferred into the ladder, with

primarily itinerant character.
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7. Light-driven symmetry breaking and hopping

The primary mode of interaction between the chains and ladders is via the apical oxygen atoms in the

chain [9, 22], as outlined in the main text. The low-energy electronic state of the ladder holes is a Zhang-

Rice singlet (ZRS), composed of Cu 3dx2−y2 and surrounding O 2px/y orbitals on each plaquette, possessing

approximate D4h symmetry. Owing to its d-wave character, the ZRS wavefunction switches sign under a

π/2 rotation around the copper-apical oxygen axis, whereas the O 2pz orbital remains invariant. As a result,

the hopping integral tap between the ZRS and the apical oxygen, which arises from a superposition of

four terms involving rotated ZRS configurations with alternating signs, cancels out. Dressing by intense in-

plane electric fields breaks this symmetry by introducing an additional Peierls phase to the hopping matrix

elements. This perturbation imbalances the superposition of hopping terms involving orbitals aligned with

and perpendicular to the electric field, allowing for a finite tap between the ladder and chain. We present a

detailed derivation of this result below.

Simplified theoretical model

The large number of atoms in the unit cell of Sr14Cu24O41 and the strongly correlated nature of this

compound render an exact many-body calculation of the full unit cell intractable. This motivates us to

identify a suitably simplified model that captures the essential features of the ladders and their weak coupling

to the chains.

First, prior diffraction studies [9, 22] show that the shortest ladder-chain bonds are between the subset

of Cu and O atoms that are approximately aligned with each other along the apical direction, as shown

in Fig. S21. Since hopping drops rapidly with distance, it is reasonable to approximate the chain-ladder

hopping in terms of this shortest bond. Second, the Sr 5s energy levels are predominantly located far from

the Fermi level as shown by prior LDA calculations [23] as well as our calculations (Fig. S21c), and hence do

not contribute significantly to the apical hopping. Finally, the ladder holes form Zhang-Rice singlet states,

composed of Cu 3dx2−y2 and surrounding O 2px/py orbitals on each plaquette. Based on these features, we

construct a CuO6 cluster consisting of a CuO4 plaquette (representing the ladder) and an apical O atom on
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Fig. S21. Weak Cu-O apical bonds. a-b, The crystal structure of Sr14Cu24O41. Polyhedra are drawn
for all the Cu-O bonds that are shorter than 3 Å. The chain and ladder features are incommensurate with
one another, but every few plaquettes along the c direction, a Cu atom lines up with an approximately
apical O. These bond lengths vary from 2.9-3 Å. c, The projected density of states (PDOS) for Sr, Cu, and
O atoms. The Sr atoms have a negligible contribution to the density of states near the Fermi level. Natoms

= 316 in the supercell.

each side (representing the adjacent chains) as a minimal model for our analytical and ab initio quantum

chemistry calculations, in order to qualitatively confirm the above theoretical derivations. We position apical

atoms on either side of the plaquette to ensure that the cluster maintains inversion symmetry.

d-wave symmetry of hole carriers and parity mismatch

We first examine the vertical hopping between the in-plane copper 3dx2−y2 orbital and the approximately

apical oxygen 2p∗z orbital (∗ here indicates the apical oxygen) above it. At the ab initio level, this hopping

integral is calculated as

tdpz =

∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3, (12)

where ψ2pz
(r) and ψ3dx2−y2 (r) are the Wannier wavefunctions of the apical oxygen 2p∗z and in-plane copper

3dx2−y2 orbitals, respectively. Here,H is the electronic Hamiltonian and can be regarded as the single-electron

part of the many-body Hamiltonian for the purpose of evaluating the hopping integral. While single-electron
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integrals are usually evaluated numerically in quantum chemistry, symmetry analysis can determine whether

the integral will vanish or not. Since the centers of these wavefunctions are approximately aligned along the

copper-apical oxygen line, we define a rotational operator R̂(θ) about this axis. The 3dx2−y2 and 2pz orbitals

exhibit different parities under π/2 rotations

R̂
(π
2

)
ψ2pz

(r) = ψ2pz
(r) , and R̂

(π
2

)
ψ3dx2−y2 (r) = −ψ3dx2−y2 (r). (13)

If we assume a perfect D4h symmetry, the Hamiltonian will be symmetric under these rotations, namely

R̂
(
π
2

)
H = H. Under such symmetry, we can then split the hopping integral as shown below.

tdpz =
1

4

[ ∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3 + R̂

(π
2

)∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3

+ R̂ (π)

∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3 + R̂

(
3π

2

)∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3
]

=
1

4

[ ∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3 −

∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3

+

∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3 −

∫∫∫
ψ∗
2pz

(r)Hψ3dx2−y2 (r)dr
3
]

= 0 . (14)

Owing to the perfect cancellation of the four possible hopping integrals, the apical oxygen 2p∗z orbital and

the in-plane copper 3dx2−y2 orbital are completely decoupled from each other.

While our ladder system does not perfectly satisfy the D4h symmetry due to half-lattice shifts between

neighboring ladders, the four oxygen atoms surrounding each copper atom still form an approximately square

plaquette, with the Cu-O bond length varying within the range 1.96 - 2.00 Å along the leg direction and

1.92 - 1.97 Å along the rung direction. Moreover, the single-electron integrals between the valence orbitals

of adjacent ladders are zero due to the parity mismatch between the orbitals, which effectively suppresses

interladder coupling. Consequently, although the hopping tdpz is not exactly zero in Sr14−xCaxCu24O41, it

is small compared to that induced by the laser (discussed further in the next subsection).
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Since cuprates are charge transfer compounds, with the in-plane Cu-O states exhibiting covalent char-

acter, low-energy electronic states due to hole doping are distributed across the Cu and in-plane O

atoms [24, 25]. This implies that we also need to consider hopping involving O 2p orbitals along the x (leg)

and y (rung) directions. Unlike the central Cu 3d orbitals, these O orbitals are not aligned with the api-

cal oxygen, and exhibit finite hopping integrals denoted as tpp. Our single-unit-cell ab initio calculation

indicates a hopping tpp ∼ 0.27 eV, consistent with the value in high-TC cuprates such as La2−xBaxCuO4

[26, 27]. Hence, in self-doped Sr14−xCaxCu24O41 ladders, in-plane and apical oxygens can, in principle, allow

chain-to-ladder hopping.

However, doped carriers in the O orbitals form Zhang-Rice singlets that obey the same symmetry as the

central 3dx2−y2 orbital [28]. The other bonding and antibonding states are at higher energies and remain

unoccupied [29]. To estimate the effective hopping between the Zhang-Rice singlet and the apical oxygen,

we define an effective oxygen wavefunction on each copper site as a symmetric superposition

ψp(r;R) =
1

2

[
ψpx

(r;R− a0
2
x̂)− ψpx

(r;R− a0
2
x̂) + ψpy

(r;R− a0
2
ŷ)− ψpy

(r;R+
a0
2
ŷ)
]
. (15)

This effective wavefunction is antisymmetric under rotations of π/2, as

R̂
(π
2

)
ψp(r;R) = −ψp(r;R), (16)

which is the same symmetry observed in the copper 3dx2−y2 orbital. As a consequence, the hopping between

the in-ladder oxygen px/y orbital and the apical oxygen p∗z orbital also vanishes:

tppz =
1

4

[ ∫∫∫
ψ∗
2pz

(r)Hψp(r)dr
3 −

∫∫∫
ψ∗
2pz

(r)Hψp(r)dr
3

+

∫∫∫
ψ∗
2pz

(r)Hψp(r)dr
3 −

∫∫∫
ψ∗
2pz

(r)Hψp(r)dr
3
]

= 0 . (17)

Since both tdpz and tpp vanish, the vertical charge transfer between the ladder and the apical oxygen also

vanishes.
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Chain-ladder hopping triggered by laser field

The D4h symmetry may be broken by the pump electric field, leading to a light-induced charge transfer

between chains and ladders. While the symmetry of the Hamiltonian is preserved when we apply an out-of-

plane polarized (E ∥ b) pump to the system, the C4 symmetry of the CuO4 plaquette can be broken by an

in-plane polarized (E ∥ a or E ∥ c) electric field. We linearize the field dependence of the Hamiltonian as

H(A) = H(A = 0)− e

2mec

∑
j

[iℏ∇j ·A(rj) + h.c.] +O(A2), (18)

and, choosing the polarization as A(rj) = A0(r)x̂, we rewrite the hopping as

tppz =

∫∫∫
ψ∗
2pz

(r)

[
H(A0 = 0)− iℏe

mec
[A0(r)

∂

∂x
+
∂A0(r)

∂x
] +O(A2

0)

]
ψp(r)dr

3. (19)

As discussed in the prior section, the first equilibrium term vanishes. Since the linear term exhibits odd

parity, and both ψ2pz
and ψp have even parity, this term will also vanish, implying that the hopping in the

presence of an optical pump is proportional to the square of the field strength. This conclusion also applies

to tdpz, the hopping integral between the Cu 3dx2−y2 orbital and the apical O 2pz orbital.

The second-order field dependence for the oxygen orbitals can be evaluated by using the Peierls substi-

tution due to the separation of charge centers. The effect of the external vector potential is simplified into

a location-dependent phase factor in the hopping integral. For two Bloch wavefunctions centered at sites ri

and rj , the hopping integral becomes

t(ri, rj) → t(ri, rj)exp

(
ie

ℏc

∫ rj

ri

A(r) · dr
)
. (20)

Thus, we estimate the light-driven hopping integral between the bonding oxygen wavefunctions in the ladder

and the 2pz orbital of the apical oxygen in the chain as

tppz =
1

2

(
tpp + tpp − tppe

−i
eA0a0
2ℏc − tppe

i
eA0a0
2ℏc

)
= tpp

[
1− cos

(
eA0a0
2ℏc

)]
≃ 1

2

(
eA0a0
2ℏc

)2

tpp ∝ A2
0. (21)
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This result shows that the tppz matrix element, which vanishes at equilibrium, becomes nonzero due to the

applied electric field, and its amplitude scales linearly with the field intensity. Our ab initio simulation using

a CuO9−
6 cluster, that is a CuO10−

6 ionic compound with a doped hole, confirms this square scaling with the

electric field, giving tppz ≈ 1.08meV for for E = 7MV/cm.

One may further consider the steady-state renormalization of the hopping matrix elements in the presence

of the optical pump. The effective period-averaged hopping integral can be expressed as

t(eff)
ppz =

2π

Ω

∫ 2π/Ω

0

tpp

[
1− cos

(
ea0A0 cos(Ωτ)

2ℏc

)]
dτ =

[
1− J0

(
ea0A0

2ℏc

)]
tpp . (22)

Here, J0(z) is the Bessel function of the first kind. In the weak-pump limit, the hopping integral is also

proportional to A2
0 at the leading order. Incorporating this value into the ab initio simulation, we obtain

t
(eff)
ppz ≈ 0.54meV for for E = 7MV/cm.

Pump-induced energy shift of ladder and chain orbitals

The optically activated hopping described in the previous section determines the rate of the hole transfer and

establishes metastability. On the other hand, the direction of hole transfer as well as the overall number of

transferred holes is determined by the difference in the optically-dressed orbital energies, as we outline below.

Similar to the one-electron integral Eq. (19), the energy of any of the relevant orbitals in the presence of

the vector potential is given by

ϵα(A) =

∫∫∫
ψα(r)

[
Ĥ(A = 0)− i

eℏ
2mec

∂A0(r)

∂x
− iA0(r)

eℏ
mec

∂

∂x
+O(A2)

]
ψα(r)dr

3 , (23)

where α = 3dx2−y2 , 2px, 2py, or 2p∗z. The first term of the integral gives the equilibrium orbital energy,

denoted as ϵ
(eq)
α . Since all relevant orbital wavefunctions are either even or odd under inversion, their squares

(density) are always even, leading to the vanishing of the second and third terms. Therefore, all orbital

energies, and hence the total hole transfer in the metastable state, are expected to change quadratically with

the external field A, or equivalently, the electric field strength E = −∂A/∂t.
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We verify this quadratic dependence by simulating the Hartree-Fock orbital energy of a CuO9−
6 cluster.

The Zhang-Rice singlet states in the ladder (consisting of the covalently bonded Cu 3dx2−y2 and O 2px/py

orbitals) are spatially extended, with a quadrupole comparable to the square of the lattice constant. On

the other hand, the apical O pz orbital in the chain has a negligible quadrupole. Due to this geometric

distinction, the in-plane pump results in a substantial energy increase for electrons in the ladder, and a

negligible impact on those in the chain. The energy imbalance results in a net transfer of holes from the chain

to the ladder. As shown in Fig. S22a, the energy difference between the Cu 3dx2−y2 and apical oxygen 2pz

orbitals increases linearly with |E|2, as does the difference between the in-plane and apical oxygen orbitals.

We further validate this conclusion by simulating the partial charge of the apical oxygens in the CuO9−
6

cluster with a correlation-consistent basis (here, we used the cc-pVTZ basis). While these single-unit-cell

simulations cannot model itinerant behavior, which is necessary for a quantitative description of the observed

charge transfer, they can reliably capture qualitative trends. The light-induced electron density increases

quadratically with the pump field, as shown in Fig. 22b. This is consistent with the experimental pump field

dependence of the differential ladder and chain XAS intensities in the metastable state.

To provide an order-of-magnitude estimation of the total charge transfer in the experimental system

with itinerant electrons, we evaluate the compressibility of the ladder system by ignoring interactions. We

find that the total light-induced energy shift obtained from our ab initio calculations results in a 2% charge

transfer, consistent with the experimentally observed 3% light-induced doping, further corroborating the

mechanism of hole transfer and metastability.

Hole transfer due to deviations from the D4h symmetry

Our theoretical picture assumes perfect D4h symmetry at equilibrium for simplicity. However, the quasi-1D

crystal structure of Sr14−xCaxCu24O41 slightly breaks this symmetry at equilibrium. Specifically, the Cu-O

bond length along the leg direction is slightly larger than that on the rung. To estimate the impact of this

asymmetry, we calculate the charge transfer resulting from a breaking of the D4h symmetry at equilibrium.

We take the average bond length to be ∼ 1.98 Å along the leg direction and ∼ 1.945 Å along the rungs.
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Fig. S22. Quadratic dependence of site energy and charge density with the external field. a,
Energy difference between 3dx2−y2 and 2pz orbitals (blue), and between 2py and 2pz orbitals (maroon) as
function of the squared electric field for a CuO9−

6 cluster with a symmetrical plaquette (Cu-O bond length
= 1.96Å). b, Normalized charge density change on the apical O atom as function of the squared electric
field. The grey dashed line denotes the normalized charge density for an unpumped asymmetric plaquette
with Cu-O bond length of 1.945Å along the rung and 1.98Å along the leg.

Since the geometric asymmetry may lead to different configurations of molecular orbitals, we do not compare

the orbital energy and instead directly focus on its effect on the chain-to-ladder hole transfer. As shown in

Fig. 22b, this slight geometric asymmetry contributes an initial charge transfer that is an order of magnitude

smaller than that due to the pump field. Therefore, we neglect equilibrium deviations from theD4h symmetry

in the discussion of our results.
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