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1. RIXS EXPERIMENTAL GEOMMETRY

In this work, we use similar experimental geometries to those employed previously to

study charge and spin scattering (11). Figure S1A shows a top-down view of the scattering

geometry. 2θ is the angle between incident and outgoing photon directions and a∗ and c∗

are the reciprocal lattice vectors. In our measurements, the 2θ value is chosen to be 118◦

for the CDW such that L ≈ 1.5 and the CDW structure factor is enhanced. For magnetic

excitations we use the maximum available 2θ = 149◦ in order to access large H. In the

setup used it was impractical to move the 12 m scattering every point in the scan, so data

were taken by rotating the sample only in order to change H the projection of the total Q

along a∗. In our notation, positive (negative) H corresponds to the grazing exit (grazing

incidence) side of the specular condition w.r.t. the c-axis surface normal.

The polarization dependent RIXS scattering amplitude can be computed from the

Kramers-Heisenberg expression:

Afi =
∑
n

〈f | D̂ |n〉 〈n| D̂ |i〉
~ω − En + iΓ/2

, (1)

where Afi is the scattering amplitude from initial state i to final state f . D̂ is the

polarization dependent dipole operator. |n〉 is the intermediate state with energy En, which

we assume is much larger than the RIXS energy loss [En � (~ω − ~ω′)]. Γ is the core-hole

lifetime.

At the Cu L-edge, the RIXS process can be written as 2p43/23d
9 → p33/23d

10 → p43/23d
9∗,

where ∗ indicates that the final states can be either the ground state (i.e. an elastic scattering

process) or an excited state. Using a single-site approximation for the resonant process the

RIXS intensity ratio between the π and σ incident x-ray polarization in the charge and spin

channel are

Ichargeπ

Ichargeσ

=

[
4 sin2(δ − θ) + cos2 θs

]
sin2(δ + θ)

4 + cos2(θs) sin2(δ − θ)
(2)

Ispinπ

Ispinσ

=
sin2(δ + θ)

sin2(δ − θ)
(3)

where θ is half of the scattering angle 2θ. θs is the angle between spin direction and

the sample c-axis (which is approximated as 90◦ following the values for undoped cuprates).
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Using Eqs. (2) and (3), we plot the normalized RIXS signal intensities with π and σ incident

polarizations at 2θ=118◦ and 2θ=150◦ in Fig. S1B-E. With π polarization and positive H,

the scattering is dominated by the magnon as seen experimentally. Under σ polarization, the

charge scattering is stronger. In this case the presence of spin flip excitations contribute to

the background in nominally elastic scattering experiments, much of this signal is suppressed

in RIXS experiments by energy-resolving the scattered beam.
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Figure S1. A, Top view of the scattering geometry. B and C are the calculated RIXS scatter-

ing intensity at 2θ = 118◦ with π pol and σ pol, respectively. D and E are the calculated RIXS

scattering intensity at 2θ = 150◦ with π pol and σ pol, respectively.

2. SELF-ABSORPTION

In this section we describe x-ray self-absorption effects and how these are accounted for

in the data. At the Cu L3 edge, the X-ray attenuation length (∼ 0.15 µm) is much smaller

than the sample thickness (∼ 2 mm). Hence, the effect of self-absorption can be simplified

as

I

I0
=

sin θo
sin θi + sin θo

(4)



4

where I and I0 are scattering intensities with and without self-absorption and θi and θo are

the angles of incidence and exit w.r.t. the sample surface. Although a more sophisticated

model would consider the photon polarization, that effect is small and can be neglected.

We tested this by calculating the off resonant intensity measured in the geometry used for

the CDW measurements which is expected to be constant apart from self-absorption effects.

Fig. S2 shows that Eq. 4 nicely captures the overall trend observed. Fig. S2B shows the

same calculation for the scattering angles used for the magnetic excitations (2θ = 149◦).

The intensity maps shown in Fig. 4 of the main text are self-absorption corrected using

the curve shown in Fig. S2B as the self absorption effect is significant over the measured

momentum range.
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Figure S2. A, The calculated self absorption coefficient in the charge scattering geometry (red

solid line), which matches the quasi-elastic intensity in the off-resonant condition (green circles).

B, Simulated self-absorption curve for the magnon measurement.

3. TEMPERATURE DEPENDENT RIXS INTENSITY MAPS

For the sake of completeness, we provide the RIXS maps used to construct Fig. 1 in the

main text in Fig. S3.



5

0.6

0.4

0.2

0.0

-0.2

-0.1 0.0 0.1

K (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.1 0.0 0.1

K (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.1 0.0 0.1

K (r. l. u.)

0.6

0.4

0.2

0.0

-0.2E
ne

rg
y 

lo
ss

 (
eV

)

-0.1 0.0 0.1

K (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.3 -0.2 -0.1 0.0

H (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.3 -0.2 -0.1 0.0

H (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.3 -0.2 -0.1 0.0

H (r. l. u.)

0.6

0.4

0.2

0.0

-0.2E
ne

rg
y 

lo
ss

 (
eV

)

-0.3 -0.2 -0.1 0.0

H (r. l. u.)

20

15

10

5

0

C
ounts (eV

-1sec
-1)

0.6

0.4

0.2

0.0

-0.2

-0.1 0.0 0.1

K (r. l. u.)

0.6

0.4

0.2

0.0

-0.2

-0.3 -0.2 -0.1 0.0

H (r. l. u.)

20

15

10

5

0

C
ounts (eV

-1sec
-1)

T = 50 K T = 51 K T = 52 K T = 56 K T = 62 K

Figure S3. Cu L3-edge RIXS intensity maps above 50 K.

4. ENERGY-WIDTH OF THE QUASI-ELASTIC LINE AT QCDW

If the high-temperature CDW is dynamic, one would expect an increase in the width of

the quasi-elastic line going through the CDW to high-temperature CDW transition. This

section shows that such an effect, should it be present, is too small to be resolved here.

The temperature dependent RIXS spectra at QCDW are shown in Fig. S4. All these spectra

are taken from χ-scans and integrated over a momentum window of 0.016 r.l.u. around

QCDW. The quasi-elastic peak is found to be energy-resolution-limited (∼ 90 meV) through

all temperatures, indicating fluctuations, if present, are slower than τ ∼ 100 fs. A direct

comparison of the RIXS spectra below and above the LTT-LTO transition is shown in

Fig. S4B. The green and yellow curves are 54 K and 59 K spectra, respectively. The drop of

quasi-elastic peak intensity at 59 K in the RIXS spectra corresponds to the disappearance of

low temperature CDW above 55 K in the momentum dependent plot of Fig. 1 in the main

text.
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Figure S4. A, Temperature dependent RIXS spectra at QCDW . A comparison of spectra just be-

low (54 K) and above (59 K) the LTT-LTO transition is shown in B. The error bars come from

Poisson counting statistics.

5. CURVE FITTING I: CDW

Here we present the fitting of the RIXS momentum scans integrated in an energy window

of ±150 meV around 0 meV. The spectra are fitted by two Lorentzian squared functions

plus a linear background:

I = c0 + c1 ∗ x+ P 1
I

 1

1 +
(
x−P 1

pos

P 1
wid

)2


2

+ P 2
I

 1

1 +
(
x−P 2

pos

P 2
wid

)2


2

, (5)

where PI , Ppos and Pwid represent peak intensity, position and width respectively, and x can

be H or K. Superscripts differentiate the two peaks P 1 and P 2, which account for the sharp

CDW peak observed at low temperature and the broad high-temperature peak observed

most clearly at high temperatures, but also persisting at low temperatures. The linear term

c0 + c1 ∗ x is used to account for the background. We chose the Lorentzian squared function

on a phenomenological basis as it reproduces the observed peak shape better than other

functions such as Lorentizian or Gaussian lineshapes. The same function has also been used

previously in the literature (17, 29).
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We start with fitting the broad high-temperature data (> 55 K), where only the high-

temperature CDW peak is observed along both H and K directions. In this case, we set P 2
I

to be zero. Representative fitting parameters and fitted curves at 59 K and 90 K are shown

in Fig. S5. The peak width and intensity shown in Fig. 3 in the main text were calculated

by taking the mean of the fitting parameters obtained from the H and K scan fits. The

error bars were determined by the larger standard error of the fitting parameters.
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Figure S5. A demonstration that the high-temperature CDW peak can be modeled accurately

by fitting a Lorentizian squared function. The fitting curve and fitting parameters are shown in

each panel. A and B plot cuts along H and K respectively at 59 K and C and D show the same

data at 90 K, which also demonstrates a clear shift towards larger absolute H.

The low temperature intensity has three contributions: Low temperature CDW, high-

temperature CDW and a linear background. As shown in Fig. S6 A and E, within experi-

mental uncertainties, the shape of the broad intensity (that including both high-temperature

CDW peak and linear background) is constant below 62 K. This allows us to fix the fitting
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parameters of the broad high-temperature CDW and linear background in Eq. 5. Represen-

tative fitting results of the low temperature spectra along H and K directions are shown

in Fig. S6 (B-D) and Fig. S6 (F-H), respectively. Here the fixed parameters for the linear

background and the high-temperature CDW are taken from the 59 K data.
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Figure S6. A,E Comparison of the low-temperature (23 K) and high-temperature (62 K) RIXS

intensity along H and K, respectively, shown over wide ranges of reciprocal space. The inset

panels show the same data but with smaller vertical scales. Integrated RIXS intensity and the

fitting at 23 K, 46 K and 54 K along H (B-D) and K (F-H) directions are shown in the other

panels.

6. CURVE FITTING II: MAGNON

The total RIXS spectrum is the sum of three functions, which account for the quasi-elastic

scattering, magnon (or paramagnon if T > TSDW ), and background which comes from charge

transfer excitations and the tail of the dd-excitations, respectively (53). A Gaussian function

of FWHM 70 meV, which is a good approximation to the instrumental resolution function,

was used to fit to the quasi-elastic peak. An antisymmetrized Lorentzian was fit to the

(para)magnon, and a linear function to the background. The scattering intensity S(Q, ω)

depends on the imaginary part of the dynamical susceptibility χ′′(Q, ω) and the sample
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temperature T :

S(Q, ω) ∝ χ′′(Q, ω)

1− e−~ω/kBT
(6)

where kB and ~ are the Boltzmann constant and the reduced Planck constant. Due to time

reversal symmetry, the dynamical susceptibility must be an odd function of ω, and we model

this with an antisymmetrized Lorentzian as:

χ′′(Q, ω) =
ΓQ

(~ω − ~ωQ)2 + Γ2
Q

− ΓQ

(~ω + ~ωQ)2 + Γ2
Q

(7)

where ΓQ and ωQ are scattering rate and pole energy at momentum Q. This form for

S(Q, ω) was convolved numerically with the Gaussian resolution function.

Figure S7A to S7C are RIXS spectra at Q=0.2, 0.25 and 0.3 r.l.u., respectively. Purple

and red curves are spectra at 23 K and 60 K, respectively. The zero energy loss is determined

by the non-resonant elastic scattering spectrum of carbon tape, which is measured before

and after each RIXS spectrum. It is evident in the raw data, that at Q=0.2, 0.25 and 0.3

r.l.u., an obvious magnon peak shift and spectral weight transfer can be observed. Figures

S7D-I show the fits to the spectra shown in Fig. S7A-C. The grey, orange and cyan dashed

curves are the linear background, quasi-elastic peak and (para)magnon, respectively. The

blue solid curves are the total fit to the raw data shown with open circles. The fitted magnon

peak positions are summarized in Fig. 4 of the main text and show a clear magnon softening

at low temperatures.
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Figure S7. A, B and C RIXS spectra at Q=0.2, 0.25 and 0.3 r.l.u., respectively. Black arrows

indicate the magnon peak position at low temperature. An obvious peak shift and spectral

weight transfer is visible at Q=0.25 and 0.3 r.l.u., proving magnon softening at these vectors.

D-F and G-I are fits to the low temperature and high temperature data respectively.

7. PARAMAGNON SOFTENING IN THE STRIPE ORDERED CDW PHASE

In this section we present additional calculations of the magnetic excitation spectrum and

how it relates to the CDW. The simplest approach is to use a Heisenberg model that only

accounts for the spin degree of freedom (53-55), neglecting charge dynamics. It is assumed
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that all Cu sites host a spin moment, that are coupled by the magnetic exchange constant

J . The spin wave theory (SWT) for such a simple model yields a magnon energy dispersion

in the absence of doped holes:
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Figure S8. The predicted magnetic excitation spectrum for the fully stripe-ordered state (A) and

with meandering quasi-ordered stripes (B). The magnon energy predicted in the antiferromag-

netic phase (Eq. 8) is plotted as a black dotted line.

~ω = 2J

√
1− (cos kx + cos ky)

2

4
. (8)

As explained in the main text, one can try to capture the effect of the stripe ordered

CDW by assuming that doped holes define domain walls on top of an otherwise perfectly

AF ordered state and that each site with a hole has a locally modified magnetic exchange

interaction changing J → JF .

We first assumed a fully ordered state where the CDW consists of vertical domain walls

every four lattice units. This was the conceptual picture presented by Tranquada et al. as a

means of explaining the positions of the charge and magnetic Bragg peaks (9). The magnetic

dynamical structure factor, S(q, ω), of this model can be straightforwardly computed under

the spin wave theory approximation. Figure S8A plots the results having averaged over

the two possible orientations of stripe domains. The magnetic exchange constants in the

model were J = 165 meV and JF = −0.09J which were fixed from several consistent

measurements as described in the main text. As expected, such a model predicts Goldstone
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modes that define the magnetic Bragg peaks consistent with those seen by neutron scattering

(9, 47). However, comparing with the experimental data shown in Fig. 4 of the main

manuscript, the prediction shows several (para)magnon branches with large spectral weight.

Most notably, an additional unobserved branch, coming from modes that propagate along

the charge stripe, appears at high H at approximately half the energy of the (para)magnon.

A more sophisticated modeling of a similar ordered stripe state, as presented in Ref. (57),

yields less weight in this extra branch but extra modes still in disagreement with experiment.

As we describe in the main manuscript, the low temperature CDW condenses only a small

fraction of the available low energy correlations and appears to be embedded alongside very

short range CDW correlations. This motivated us to calculate the magnetic excitation

spectrum of electronic configurations that reproduce the experimentally observed charge

correlation. In the initial starting configuration, stripes were spaced by 4 lattice units in

order to reproduce the observed wavevector and we assume that the stripes have a width

of two lattice units where the hole concentration is higher. Note that had we assumed a

stripe with a width of one lattice unit, this would predict appreciable 2QCDW satellite peak

intensity that we do not observe here. The disordered states were generated by a Metropolis

Monte Carlo algorithm with a fictitious temperature where the energy in the conventional

Metropolis algorithm was replaced by the mean-square error between the structure factor

of the charge configuration at a given Monte Carlo step and a target structure factor. The

latter was chosen to reproduce the main characteristics of the experimental charge structure

factor. Charges were moved in horizontal pairs in such a way that vertical stripes keep

continuity and do not overlap as explained in the Methods section of the main article. We

use a fictitious temperature such that moves that increase the mean-square error are very rare

(less than 1%). Typically after 40000 Monte Carlo steps the error saturates at a minimum

value and the algorithm stops. It is assumed that the charge stripes define domain walls

across which magnetic exchange J is replaced by a ferromagnetic exchange JF . J = 165 meV

was chosen to match our observed zone boundary magnon energy and JF = −0.09J was

chosen to obtain the correct energy for the neck of the hourglass in Ref. (69). In the case of

a meandering stripe, we insert an additional JF parallel to the stripe direction, in order to

maintain well defined, unfrustrated domain walls in the colinear AF order.

Fig. S9A,D shows disordered stripe configurations which reproduce the charge structure

factor of the experiment. Each orange/dark-red site is a hole rich site representing around
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1/4 of a doped hole with up/down spin. There are equal numbers of hole rich sites and hole

poor sites (black and white) giving a nominal doping of 1/8 holes per site as in the exper-

iment. Panels b and e show the charge structure factor of the corresponding configuration

on the left column and panels c and f compare a horizontal scan of the structure factor with

the target model. The first row (a,b,c) corresponds to the high temperature state while the

second row (d,e,f) is the low temperature state. The charge configuration corresponding to

d is shown as an inset in Fig. 4 of the main article. As the beam-size in the experiment is

much larger than the domain size, the theoretical magnetic dynamic structure factor was

averaged over the two possible orientations of the domains.
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Figure S9. Monte Carlo simulation results for the high temperature charge configuration (A,

B, C) and the low temperature charge configuration (D, E, F). A and D are the final charge

and spin configurations. White and black squares represent up and down spins in hole poor sites

while orange and red are up and down spins in hole rich sites. The exchange couplings are in-

serted following the prescription given in the Methods section which results in an unfrustrated

collinear magnetic texture (i.e. neighboring sites with the same spin direction are joined by fer-

romagnetic coupling). B and E are the corresponding charge structure factors and C and F

compare a cut of the target model with the simulation. The target model is defined by the fitted

CDW lineshape in Eq. (5) with parameters similar to the experimental ones. For the high tem-

perature state, Lorentzian squared functions were located at (H,K) = (±δ, 0) with δ = 0.25 r.l.u.

The width was set to 0.08 r.l.u. in both H and K directions and the total intensity was fixed

by sum rule considerations. For the low temperature state, we sum, at each equivalent point,

two Lorentzian squared functions, one with the same parameters as before and the other with

the same δ but with a width of 0.008 r.l.u. The total intensity ratio of the narrow to broad peak

functions was set to 1/7, also similar to the experiment. Notice that the narrower peak is resolu-

tion limited due to the finite size of the real space lattice (40 × 40) yielding a finite separation of

points in momentum space.
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Within the adopted model, there is no magnetic frustration and the lowest energy spin

configuration is collinear. We also tried another model, allowing the charged stripes to be

cut in segments as appears to be the case at very low doping (37). Domain wall formation

in such model becomes frustrated since the AF regions become connected. This leads to

spin canting, and more importantly, to an unphysical large value of JF , which is needed to

obtain a magnetic incommensurability matching the experiment. Furthermore, such large

JF places the neck of the hourglass at too high an energy compared with experiments. This

imposes strong constraints on the possible charge configurations that reproduce the present

charge correlations that were taken into account in the chosen model with uninterrupted

rivers of charge. It is worth mentioning that stripe segmentation probably plays a role on

the decoupling of the spin and charge incommensurability observed above 54 K. Indeed,

introducing a few cuts shift the magnetic incommensurability in the right direction.

Calculations of the dynamical structure factor are shown in Fig. S8B as well as Fig.

4d of the main manuscript for the low temperature state in which a sharp CDW peak co-

exists with the broad diffuse scattering. This yields substantially better agreement with

our measurements as compared with a classical stripe crystal (Fig. S8A) and reproduces

a similar paramagnon softening to that observed using parameters that are fixed based on

other measurements. Upon heating through the transition, the experimental paramagnon

softening is reduced consistent with a weakening of the CDW correlations and seemingly

independent charge and spin fluctuations. In the theoretical computations, temperature

effects where taken into account by choosing an appropriate charge configuration to match

the experiment, but were not directly included when applying SWT. We see little difference

in our predictions between the low and high temperature states. This might suggest that

temperature effects play an important role directly modifying the spin correlations at higher

temperatures and not only by modifying the charge configuration.
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