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I. FURTHER DETAILS OF THE SINGLE-CRYSTAL SYNTHESIS

Single-crystal growth of R4Ni3O10 (R =La, Pr) was performed as described Refs. [1, 2]. The parent Ruddlesden-
Popper phases were prepared in a floating zone furnace (HKZ-1, SciDre GmbH) with 20 bar O2 for R =La and 140 bar
for R=Pr. Oxygen was flowed at a rate of 0.1 l/min during growth and the feed and seed rods were counter-rotated at
30 r.p.m. and 27 r.p.m., respectively, to improve zone homogeneity. The traveling speed of the seed was 4 mm/h and
the growth time was 30 hours. 438-phase crystals were obtained by reducing the 4310-specimens in 4 mol % H2/Ar
gas at 350◦C for five days. The resulting samples have appreciable residual strain and are very brittle, so they were
mounted on copper plates for transport.

II. RESONANT BEHAVIOR

In Fig. S1 we show the resonant behavior of the magnon. The magnon peak is visible at several energies from 851.5
to 853.1 eV exhibiting a Raman-like behavior in which it appears at a constant energy loss, rather than a constant
final x-ray energy. We find that the magnon is strongest at 852.7 eV (as emphasized by the dashed line at this energy).
This is well above the La M4-edge at 849 eV, further confirming the magnetic origin of the magnon.

III. FITTING OF THE RIXS DATA

The spectra were fitted with a Gaussian function for the elastic peak, a damped harmonic oscillator model for the
paramagnon and a quadratic background. The inelastic peak was convoluted with a Gaussian function to account for
the energy resolution. This lineshape is described by nine parameters, but only six parameters are free to vary in the
fit. For the Gaussian lineshape describing the elastic peak, the center and the width are fixed by measurements of a
graphite elastic reference sample, only the amplitude is free to vary. For the inelastic mode, the temperature is fixed,
and the center, width and amplitude are free. For the quadratic background, we use a function f(x) = b for x < 0
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FIG. S1. RIXS spectra of La4Ni3O8 at (−0.44, 0) as a function of incident energy around the Ni L3 edge. The chosen working
energy that optimizes the magnon intensity, 852.7 eV, is highlighted using a dashed line and occurs above the maximum in the
elastic line resonance, further confirming the magnetic nature of the observed inelastic excitations [3].
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FIG. S2. RIXS spectra of Pr4Ni3O8 as a function of Q at the resonant energy of the magnon 852.7 eV. Data are shown as red
points and the fit is shown as a black line, which is composed of the magnetic excitation in orange and the elastic line in blue.
The in-plane Q of the measured spectrum is denoted in the top right of each panel. Note that the scale of the y-axis is half of
that in Fig. 2 of the main text.

and f(x) = a ∗ x2 + b for x > 0, a and b are free parameters. Prior to computing the final fit, we performed an initial
fit in which the elastic energy was allowed to vary, which we used to shift the spectra in energy such that the elastic
energy is set to exactly zero.

IV. COMPARISON OF La4Ni3O8 AND Pr4Ni3O8

The difference between La4Ni3O8 and Pr4Ni3O8 has been studied in prior x-ray absorption and density functional
theory (DFT)-based work [2]. This study concluded that both materials are rather similar regarding their high- and
medium-energy physics such as spin states, orbital polarization, etc. The primary difference is that stripe order opens
a small insulating gap in La4Ni3O8, whereas Pr4Ni3O8 remains metallic without long-range order. Pr4Ni3O8 was later
reported to have spin-glass behavior likely coming from short-range stripe correlations [4]. Since the more ordered
and insulating nature of La4Ni3O8 compared to Pr4Ni3O8 is expected to give sharper magnetic RIXS spectra, we
focused on the former material for this paper, but we also took data on Pr4Ni3O8 as shown in Fig. S2. A similar
energy peak is observed which is slightly broadened and less intense compared to La4Ni3O8. Fitting the spectra for
Pr4Ni3O8 in the same way as was done for La4Ni3O8 yields a value of the near-neighbor exchange perhaps 10% lower,
but overall the two materials are very similar (Fig. S3).

V. THEORY OF MAGNETIC EXCITATIONS IN THE STRIPE-ORDERED STATE

In this Section, we compute the dispersion relation and RIXS intensity for the magnons in a diagonal stripe state.
To reproduce the stripe order shown in Fig. 1(b) of the main text, we consider a model with the following interactions
illustrated in Fig. S4. J couples nearest-neighbor spins within the same stripe, J1 couples spins across the stripes in
the [1, 0, 0] direction, and Jz couples spins between layers within the trilayer in the [0, 0, 1] direction. A further J2
coupling across the stripes along the [1, 1, 0] direction was also considered, but its effect could not be distinguished
in the measured RIXS spectra, so it was omitted. This is expected as this super-superexchange contribution is weak
given the 90 degree Ni-Ni-Ni pathway that is involved. We also ignore any single-ion anisotropy, again because it
would be difficult to detect given the width of the elastic line. The in-plane lattice vectors for the structural unit cell
are

a1 = (a, 0, 0), a2 = (0, a, 0) (1)

and for the magnetic unit cell are

amag
1 = (3a, 0, 0), amag

2 = (−a, a, 0). (2)
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FIG. S3. Magnetic dispersion of La4Ni3O8 and Pr4Ni3O8. This figure is the same as Fig. 3 of the main text, but with data for
Pr4Ni3O8 added. Black/red points are the extracted energies of the magnetic excitation for La4Ni3O8/Pr4Ni3O8. The black
line is the fit to the experimental dispersion of La4Ni3O8, which is composed of the weighted sum of three dispersive magnons,
called the acoustic, middle and optic modes, which are plotted as blue, orange and green lines, respectively.
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FIG. S4. Coupling of the spins in the stripe-ordered state for: (a) a spin up in the top layer of the trilayer, (b) a spin down
in the top layer, and (c) between the different layers. For simplicity, only the Ni sites are shown with red, blue and purple
denoting up-spin, down-spin and hole states as in Fig. 1 of the main text.

where, for simplicity, we have assumed a primitive magnetic cell with non-orthogonal lattice vectors. Along the c
direction, we have trilayers separated by the body-centered translation (a/2, a/2, c/2). Since there are no observable
correlations between trilayers [5], we consider only a single trilayer here. The layers within a trilayer are in registry
along c, with each layer separated by the interlayer distance d ≈ c/8. The scattering vector Q is presented in
normalized units with a = c = 1.

A. Dispersion relation

We proceed to calculate the magnon dispersion for the diagonal stripe state by generalizing the torque equation
formalism of Carlson et al. [6] to the trilayer case (equivalent results can be obtained using the less transparent
Holstein-Primakoff treatment [6]). According to neutron scattering data, the spins in the ground state are oriented
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along c [5]. Therefore, the generalized torque equations for the spins reduce to:

dSx
r,i

dt
= − 1

h̄

Sy
r,i

∑
r′,j

J ij
rr′S

z
r′,j − Sz

r,i

∑
r′,j

J ij
rr′S

y
r′,j

 ,

dSy
r,i

dt
= − 1

h̄

Sz
r,i

∑
r′,j

J ij
rr′S

x
r′,j − Sx

r,i

∑
r′,j

J ij
rr′S

z
r′,j

 ,

dSz
r,i

dt
≈ 0,

(3)

where r, r′ label the positions of the spins in different magnetic unit cells and the indices i, j label the spins within
each magnetic unit cell (i, j = 1, ..., 6) as shown in Fig. S2. We seek sinusoidal solutions of the form

Sx
r,i = Sx

i exp[i(Q · r − ωt)] , Sy
r,i = Sy

i exp[i(Q · r − ωt)], (4)

and we set Sz
r,i = ±S with the sign given by the orientation of the spin in the ground state. To start, we identify

the couplings J ij
rr′ that connect the spins at different lattice positions, with the origin taken to be the location of

spin 1. We distinguish two groups of spins, (S1, S3, S5) and (S2, S4, S6), with each group having equivalent in-plane
locations due to the c-axis translational symmetry. Their couplings are

• S1 (r = 0) couples to S2 twice with J (r′ = a1, r′ = a2) and twice with J1 (r′ = −2a1, r′ = −2a2). The same
applies for S3 (S5) coupled to S4 (S6).

• S2 (r = a1) couples to S1 twice with J (r′ = 0, r′ = a1 − a2) and twice with J1 (r′ = 3a1, r′ = a1 + 2a2).
The same applies for S4 (S6) coupled to S3 (S1).

For the couplings along [0,0,1], we have:

• S1 (S2) couples to S3 (S4) with Jz.

• S5 (S6) couples to S3 (S4) with Jz.

• S3 (S4) couples with Jz to S1 (S2) and to S5 (S6).

With this information, we can write the torque equations for each of the six spins in the magnetic unit cell, for
example:

dSx
0,1

dt
= − 1

h̄

{
Sy
0,1(−S)

(
2J + 2J1 + Jz

)
− S

[
J
(
Sy
a1,2

+ Sy
a2,2

)
+ J1

(
Sy
−2a1,2

+ Sy
−2a2,2

)
+ Jz

(
Sy
(0,0,− c

8 ),3

)]}
.

(5)

Substituting Eq. 4, we can rewrite this expression as

ih̄ω

S
Sx
1 = −Sy

1

(
2J + 2J1 + Jz

)
− Sy

3Jze
−iQz

8

− Sy
2

[
J
(
eiQx + eiQy

)
+ J1

(
e−2iQx + e−2iQy

)]
,

(6)

and simplifying

ih̄ω

S
Sx
1 = −ASy

1 − CS
y
2 −DS

y
3 , (7)

where we have defined

A = 2J + 2J1 + Jz,

B = A+ Jz,

C = J
(
eiQx + eiQy

)
+ J1

(
e−2iQx + e−2iQy

)
,

D = Jze
−iQz

8 .

(8)
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The final torque equations for the six spins are

ih̄ω

S
Sx
1 = −ASy

1 − CS
y
2 −DS

y
3 ,

ih̄ω

S
Sy
1 = +ASx

1 + CSx
2 +DSx

3

ih̄ω

S
Sx
2 = +ASy

2 + C∗Sy
1 +DSy

4 ,
ih̄ω

S
Sy
2 = −ASx

2 − C∗Sx
1 −DSx

4

ih̄ω

S
Sx
3 = +BSy

3 + CSy
4 +DSy

5 +D∗Sy
1 ,

ih̄ω

S
Sy
3 = −BSx

3 − CSx
4 −DSx

5 −D∗Sx
1

ih̄ω

S
Sx
4 = −BSy

4 − C∗S
y
3 −DS

y
6 −D∗S

y
2 ,

ih̄ω

S
Sy
4 = +BSx

4 + C∗Sx
3 +DSx

6 +D∗Sx
2

ih̄ω

S
Sx
5 = −ASy

5 − CS
y
6 −D∗S

y
3 ,

ih̄ω

S
Sy
5 = +ASx

5 + CSx
6 +D∗Sx

3

ih̄ω

S
Sx
6 = +ASy

6 + C∗Sy
5 +D∗Sy

4 ,
ih̄ω

S
Sy
6 = −ASx

6 − C∗Sx
5 −D∗Sx

4 .

(9)

This results in a 12× 12 secular matrix (6 spins, 2 components, x, y, per spin)

M =



0 −A 0 −C 0 −D 0 0 0 0 0 0
A 0 C 0 D 0 0 0 0 0 0 0
0 C∗ 0 A 0 0 0 D 0 0 0 0
−C∗ 0 −A 0 0 0 −D 0 0 0 0 0

0 D∗ 0 0 0 B 0 C 0 D 0 0
−D∗ 0 0 0 −B 0 −C 0 −D 0 0 0

0 0 0 −D∗ 0 −C∗ 0 −B 0 0 0 −D
0 0 D∗ 0 C∗ 0 B 0 0 0 D 0
0 0 0 0 0 −D∗ 0 0 0 −A 0 −C
0 0 0 0 D∗ 0 0 0 A 0 C 0
0 0 0 0 0 0 0 D∗ 0 C∗ 0 A
0 0 0 0 0 0 −D∗ 0 −C∗ 0 −A 0



. (10)

Diagonalizing this matrix yields the squared eigenvalues

λ21(Q) = −A2 + C∗C (11)

and

λ22,3(Q) = −A
2

2
− B2

2
+ C∗C + 2J2

z ±
1

2
Jz
√

(A+B)2 + 32C∗C − 8J2
z , (12)

each of which are two-fold degenerate because of the tetragonal symmetry of the ground state. As iω = λ, these
eigenvalues correspond to the magnon branches

ωmiddle(Q) =
√
A2 − C∗C (13)

and

ωacoustic,optic(Q) =

√
A2

2
+
B2

2
− C∗C − 2J2

z ∓
1

2
Jz
√

(A+B)2 + 32C∗C − 8J2
z . (14)

To justify these labels, and give some sense of these energies, we consider the Γ point. Substituting Q = 0 in Eq. 8
gives C = 2J + 2J1 and D = Jz, which shows that our labels were chosen in order of increasing energy:

ωacoustic(0) = 0,

ωmiddle(0) = SJz
√

1 + 2C/Jz ∼ S
√

2JzC,

ωoptic(0) = SJz
√

1 + 6C/Jz ∼ S
√

6JzC,

(15)

where the approximation applies for Jz � J . The magnon dispersion for the parameters determined by the fit to the
RIXS data, J=69 meV, J1=17 meV (with Jz=13.6 meV), can be seen in Fig. S5.
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FIG. S5. Magnon dispersion with J=69 meV, J1=17 meV and Jz=13.6 meV, as in the main text, along the (Q,Q) and (Q,0)
directions (with Qz=0). The dashed curves in the left plot are for the twin domain (Q,-Q).

B. Calculation of the RIXS intensities

As explained in the main text and Ref. [7], the RIXS intensity for each mode, labeled n, can be written as

In(Q) =

∣∣∣∣∣∣
∑
i

kin ·Mn,Q(ri)

∣∣∣∣∣∣
2

, (16)

with i summed over the six spins in the magnetic unit cell and

Mn,Q(ri) =
(
cxn,Q,iS

x
i , c

y
n,Q,iS

y
i , 0
)
. (17)

As the analytic expressions for the eigenvectors are complicated, we chose to determine them by diagonalizing the
secular matrix Eq. 10 numerically for each Q using SciPy [8]. As noted above, each distinct magnon branch within
our model has two degenerate eigenvalues, with the two members of each pair related by a 90 degree in-plane rotation
because of the tetragonal symmetry. That is (

cx1 , c
y
1, c

x
2 , c

y
2, ...

)
(18)

is degenerate with (
−cy1, cx1 ,−c

y
2, c

x
2 , ...

)
(19)

with n,Q being implicit. It is important to enforce this symmetry when calculating the RIXS intensity.
For the fit shown in the text, we took into account the scattering geometry of the RIXS measurements, with

kin = cos θI − sin θQ, (20)

and

|Q| = 4π sin θ

λE
(21)

with θ the Bragg angle and λE the photon wavelength. Here,

I =
Q× c×Q

|c×Q|
. (22)

In particular, as the in-plane component of Q is swept, the Qz component changes accordingly.
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FIG. S6. Magnetic supercells used for determining the magnetic exchange. Ni sites are shown as spheres with red, blue and
purple denoting up-spin, down-spin and hole states, respectively, as in Fig. 1 of the main text and Fig. S4. Gray lines trace the
Ni-O bond network. Each magnetic cell is a 3

√
2a×

√
2a× c tiling of the structural cell containing 36 Ni atoms (180 atoms in

total), noting that there are two trilayer units a given unit cell. Atoms that are at the edge of the unit cell are shown as full
spheres rather than being cut-off.

VI. FIRST-PRINCIPLES DETERMINATION OF EXCHANGE COUPLING CONSTANTS IN La4Ni3O8

We performed DFT calculations for La4Ni3O8 with the all-electron full potential code WIEN2k [9, 10] using the
generalized gradient approximation (GGA) exchange-correlation functional [11]. In these calculations, as we did
previously [2, 12], we considered the influence of thee Coulomb interaction, U . The U modification of DFT is usually
included to compensate for the under-localization of transition-metal 3d-electrons in DFT. Including U , conversely,
tends to over-localize electrons as it “double counts” the true Coulomb and exchange interactions as explained in, for
example, Refs. [13–15]. Because of this, it is not immediately obvious whether including U leads to a more accurate
value of J . In calculations, we found that the inclusion of U simply increases the size of the gap, and also leads to
a modest increase in J , as outlined in Table I. Calculations with and without U find the same insulating, charge
and spin stripe-ordered ground state, which was predicted before this state was experimentally observed [5]. In our
prior work, we examined the role of U at length and found that the low-spin stripe state La4Ni3O8 was appropriately
described by GGA calculations even without the inclusion of U [2, 12]. We refer the reader to these papers for the
reasoning behind this. Since it allows us to compute J with fewer adjustable parameters, we report values from GGA
calculations in the main text, and find that this is in good accord with experiment. As is evident based on how J
changes with U , the very close match between theory and experiment of 2 meV at the GGA level is likely coincidental.
We note that similar values for the superexchange can be obtained from rough estimates using a sum of the Mott
and charge transfer contributions, J = 2t2/Ud + 2t2/[∆ +Up/2], with t = t2pd/∆. Using Ud = 8.5 eV and Up = 7.3 eV

values from a similar analysis on the cuprates [16], with a ∆ and tpd obtained from our Wannier fit for La4Ni3O8 [17],
a comparable J of 99 meV is obtained. But this, obviously, depends on the choice of Ud and Up. Spin-orbit coupling
is not expected to have an appreciable effect on the exchange constants for 3d transition metal ions, especially for eg
states where the orbital moment is largely quenched. This has been explicitly verified in our prior calculations [5].

The exchange couplings (J , J1 and Jz) were obtained from total energy calculations for different Ni spin configura-
tions (labeled C1-C4 in Fig. S6) mapped to a Heisenberg model. Configuration C1 is the experimental and theoretical
ground state as shown in Fig. 1 of the main text. The magnitudes of the magnetic moments of the Ni2+ atoms were
between 0.6-0.7 µB and we confirmed that these values were similar within 0.1 µB in the different configurations, an
accuracy typical of this type of calculation, justifying the Heisenberg mapping. Different configurations C1-C4 have
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differing magnetic bonds:

• C1 – AFM J , AFM J1, AFM Jz

• C2 – AFM J , AFM J1, FM Jz

• C3 – FM J , FM J1, FM Jz

• C4 – FM J , AFM J1, FM Jz

The energies per trilayer are (with each bond counted once)

EC1 = E0 − 4× 3JS2 − 3× 4J1S
2 − 2× 4JzS

2

= E0 − 3J − 3J1 − 2Jz

EC2 = E0 − 3J − 3J1 + 2Jz

EC3 = E0 + 3J + 3J1 + 2Jz

EC4 = E0 + 3J − 3J1 + 2Jz

(23)

where E0 is the non-magnetic energy. Solving this set of linear equations gives

J = (EC4 − EC2)/6

J1 = (EC3 − EC4)/6

Jz = (EC2 − EC1)/4.

(24)

whose values are listed in the main text.

VII. X-RAY ABSORPTION

Our X-ray absorption spectrum (XAS) measurements aim to compare the intensity of the O K-edge pre-peak
feature as a guide to the 3d-2p orbital hybridization in nickelates and cuprates. We analyze our data on La4Ni3O8

against literature data for La2−xSrxCuO4 from Ref. [18] and Nd1−xSrxNiO2 from Ref. [19]. As far as we are aware,
Nd1−xSrxNiO2 data are only available for in-plane polarization, so we only show this component of the polarization.
The intensity of the spectra are scaled to have equivalent intensities for energies above 538 eV past the main O
K-edge step. Since different measurements can have different absolute energy calibrations, we used measurements
of different reference samples to put the spectra on the same energy-scale. We use Ref. [2] as our reference energy
calibration for which La4Ni3O8 was measured alongside La2−xSrxCuO4 and SrTiO3. We then used the SrTiO3

reference measurements in [19] to put Nd1−xSrxNiO2 on the same energy scale. While in La4Ni3O8 and La2−xSrxCuO4

the pre-peak is very clear, the pre-peak in Nd1−xSrxNiO2 is broader making isolating the pre-preak less immediately
obvious. We took the same ‘background’ intensity as was used in [19], which comes from a measurement of undoped
NdNiO2 and use a lorentzian lineshape to fit. The dominant error in our analysis likely comes from inhomogeneity in
the doping of the Nd1−xSrxNiO2 results we compare to and some uncertainty in how to isolate all the intensity in the
pre-peak. These will likely improve in the future by higher quality sample preparation. Further analysis of the ligand-
hole anisotropy will also be important, but also requires polarization-dependent measurements of Nd1−xSrxNiO2 that
are not currently available in the literature.
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