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The discovery of superconductivity in a d9−δ nickelate has inspired disparate theoretical perspectives
regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic
superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could
be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d9−1=3

trilayer nickelates R4Ni3O8 (where R ¼ La, Pr) and associated theoretical modeling. A magnon energy
scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J ¼ 69ð4Þ meV is observed,
proving that d9−δ nickelates can host a large superexchange. This value, along with that of the Ni-O
hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate
case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to
testing the relevance of superexchange to nickelate superconductivity.

DOI: 10.1103/PhysRevLett.126.087001

Ever since the discovery of superconductivity in the
cuprates [1], researchers have been searching for related
unconventional high-temperature (Tc) superconductors
based on different transition metal ions [2–4]. Nickel,
given its proximity to copper in the periodic table,
represents an obvious target element. A popular concept
has been to try to realize materials with Ni1þ∶3d9 ions with
planar oxygen coordination residing in layers, as it was
conjectured that this would mimic the strong magnetic
superexchange that was proposed to be important for
cuprate superconductivity [5]. The appropriateness of this
assumption in layered RNiO2 materials (R ¼ La, Pr, Nd)
was, however, questioned, as the predicted increase in
charge-transfer energy in RNiO2, with respect to cuprates,
would be expected to reduce the superexchange [6].

Superconductivity at a relatively modest Tc ≈ 15 K in
Nd1−xSrxNiO2 was nonetheless reported [7]. This has
motivated many studies, often conflicting, concerning
the nature of the normal-state electronic structure and
correlations in these and related materials [8–30]. RNiO2

materials are the infinite-layer members of a series
of low-valence (with d9−δ filling) layered nickelates
Rnþ1NinO2nþ2, where n represents the number of NiO2

layers per formula unit [31–34]. Given the important role of
charge transfer and superexchange in many theories of
unconventional superconductivity, determining trends for
these quantities is highly important for understanding
nickelate superconductivity and potentially discovering
new nickelate superconductors [35,36]. Among the known
members of this nickelate family, trilayer materials, shown
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in Fig. 1(a), are ideal for testing the fundamental aspects of
the analogy between layered nickelates and cuprates.
This is because complications from rare-earth self-doping,
c-axis coupling, and inhomogeneous samples are less
severe in R4Ni3O8 than in RNiO2 [34,37,38].
In this Letter, we combine resonant inelastic x-ray

scattering (RIXS) with first-principles calculations
and theoretical modeling to characterize the magnetic
exchange in trilayer R4Ni3O8 that fall in the overdoped
regime of cuprates in terms of electron count. We find a
near-neighbor exchange of J ¼ 69ð4Þ meV, in good accord
with our first-principles calculations. This demonstrates
that these reduced nickelates indeed have a strong super-
exchange (within a factor of 2 of the cuprates). By
comparing the O K-edge prepeak intensity to those of
cuprates and infinite-layer nickelates, we argue that these
trilayer materials are intermediate between cuprates and
infinite-layer nickelates. Based on this, we suggest that
electron-doping R4Ni3O8 materials provides a compelling
route to testing the relevance of superexchange for nickel-
ate superconductivity.

R4Ni3O8 (R ¼ La, Pr) single crystals were prepared by
synthesizing their parent Ruddlesden-Popper phases and
reducing them in H2=Ar gas as described previously
[34,41]. The resulting samples are single-phase crystals
with a tetragonal unit cell (I4/mmm space group) and lattice
constants of a ¼ b ¼ 3.97 Å, c ¼ 26.1 Å. The trilayer
R4Ni3O8 phase is shown in Fig. 1(a); Fig. 1(b) zooms in
on the Ni-O planes. These samples have an effective hole
doping of δ ¼ 1=3. Reciprocal space is indexed in terms of
scattering vector Q ¼ ð2π=a; 2π=a; 2π=cÞ. Both La and Pr
materials are rather similar regarding their high- and
medium-energy physics such as spin states and orbital
polarization [34]. The primary difference is that La4Ni3O8

(which exhibits strong antiferromagnetic spin fluctuations
[47]) has stripe order that opens up a small insulating gap
[34], whereas Pr4Ni3O8 remains metallic without long-
range order. Since the more ordered and insulating nature of
La4Ni3O8 compared to Pr4Ni3O8 is expected to give
sharper magnetic RIXS spectra, we focus on the former
material for this paper.
We used XAS to confirm the expected electronic proper-

ties of the La4Ni3O8 samples. The Ni L-edge spectrum
from 846–878 eV is shown in Fig. 1(c). The strongest
feature around 850 eV is the LaM4 edge, which is followed
by the Ni L3 and L2 edges at 852 and 870 eV, respectively.
Substantial linear dichroism is apparent, especially at the
L2 edge where the spectrum is not obscured by the La M4

edge, indicating that the unoccupied 3d states are primarily
x2 − y2 in character [34]. The overall spectral shape is very
similar to that seen in cuprates [48–50], consistent with a
d9L configuration, with no indication for a high-spin d8

component of the holes [34]. This is reasonable, since the
planar coordination of Ni leads to a large splitting between
the x2 − y2 and 3z2 − r2 states, which is expected to out-
compete the Hunds exchange coupling, thus favoring a
low-spin ground state [51]. The O K-edge spectrum around
525–545 eV in Fig. 1(d) shows a prepeak feature around
530 eV, which is known to indicate hybridization between
the Ni 3d and O 2p states [34,48,49]. Our measurements
find that this prepeak has a strong linear dichroism as well,
as observed in cuprates [49].
We then performed RIXS to study the low-energy

degrees of freedom. High-energy-resolution RIXS mea-
surements were performed at I21 at the Diamond Light
Source with a resolution of 45 meV and at NSLS-II with a
resolution of 30 meV. All RIXS data shown were taken at a
temperature of 20 K using a fixed horizontal scattering
angle of 2θ ¼ 154° and x-ray polarization within the
horizontal scattering plane (π polarization). Different
momenta were accessed by rotating the sample about the
vertical axis, such that the projection of the scattering
vector varies. ðH; 0Þ and ðH;HÞ scattering planes were
accessed by rotating the sample about its azimuthal angle.
Figure 2 plots low-energy RIXS spectra of La4Ni3O8 as a
function of Q. A relatively strong elastic line is present for

FIG. 1. Crystal structure and x-ray absorption spectrum (XAS).
(a) Unit cell of La4Ni3O8 and Pr4Ni3O8 with Ni in purple, O in
gray, and La= Pr in green [39]. (b) The active trilayer nickel-oxide
planes in La4Ni3O8 with an illustration of the diagonal stripe-
ordered state [40]. Ni sites with extra hole character (with respect
to the d9 magnetic rows) are in purple (S ¼ 0), whereas Ni up and
down spins in the magnetic rows are colored red and blue,
respectively (S ¼ 1=2). (c),(d) XAS data of La4Ni3O8 measured
in total fluorescence yield mode with polarization perpendicular
and approximately parallel to the sample c-axis for (c) the Ni
L-edge and (d) the O K-edge.
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all Q likely arising from apical oxygen removal during
sample preparation, which induces internal strain in the
samples. In the 70–90 meV energy range, a weakly
dispersive, damped feature is observed. Based on the
energy of the feature, this could either be magnetic or
the bond-stretching phonon common to complex oxides
[52–56]. It is known, however, that the intensity of the
bond-stretching phonon increases like jQj2, inconsistent
with what we find [55,56] (see Fig. 2). The peak also
resonates slightly above the Ni L edge [41], which is also
consistent with a magnetic origin [52]. On the basis of these
observations, we assign this feature to magnetic excitations.
Further supporting this assignment, we note that Pr4Ni3O8

spectra exhibit a weaker, more damped paramagnon
excitation, which is expected, as this compound is metallic
with spin-glass behavior [41,57]. Below, we will demon-
strate a consistency between this mode and analytical
modeling and density functional theory (DFT).
In order to analyze the magnetic dispersion, we fit the

low-energy RIXS spectra with the sum of a zero-energy
Gaussian fixed to the experimental energy resolution in
order to account for the elastic line and a damped harmonic
oscillator to capture the magnetic excitation [41]. To model
the magnetic interactions, we expect a leading contribution
from the nearest-neighbor in-plane Ni-O-Ni super-
exchange, J. We further know that La4Ni3O8, like some
other nickelates and cuprates, has a striped ground state
with both spin and charge character, with an in-plane wave
vector of Q ¼ ð1=3; 1=3Þ [40,58]. This diagonal stripe
order is illustrated in Fig. 1(b) [41]. In each plane, we
have two antiparallel spin rows (corresponding to d9)
separated by an antiphase domain wall (corresponding to
nonmagnetic d8). This gives rise to six spins in the
magnetic unit cell in a given trilayer, which we label as
spins 1–6. Nearest-neighbor spins within the planes in a
given stripe are coupled by the superexchange J, which we

expect to be the strongest interaction. The antiphase
domain wall is due to coupling between the magnetic
stripes. There are two potential couplings (super-super-
exchange), but we only expect one of them (the one along
the tetragonal axes) to be significant, as the other involves a
90 degree pathway [59]. As the planes are antiferro-
magnetically coupled [58], this gives rise to a positive
Jz coupling between successive layers (there is no evidence
for significant magnetic coupling between the trilayers
[58], so our model deals with only a single trilayer). We
solved the resulting Heisenberg model in the spin-wave
approximation [60], which yields three dispersive modes
(split by Jz), which we term the acoustic, middle, and optic
modes [41]. The energy of each of these three modes
changes with in-plane momentum, and the relative intensity
of the modes is modulated by the out-of-plane momentum,
which varies with in-plane momentum due to our fixed-
scattering-angle configuration. From cuprates, we antici-
pate that the interlayer coupling will be of order 10 meV,
below our energy resolution [61,62]. On this basis, we
analyzed our data in terms of the sum of the three magnon
modes. The RIXS intensity for a particular acoustic,
middle, or optic magnetic mode n in the π-σ polarization
channel is given by [63]

InðQÞ ¼
�
�
�
�

X

i
kin ·Mn;QðriÞ

�
�
�
�

2

; ð1Þ

where kin is the incident wave vector and Mn;QðriÞ is the
magnetization vector at site i (i.e., the eigenvector of the nth
spin-wave mode at Q). This vector is in-plane, since
the ground-state moments are along c [58]. The final
element of our model is to sum over the two tetragonal
domains given the known magnetic twinning in
La4Ni3O8∶ðH;KÞ → ðH;−KÞ [40,58]. We determined
the energies and eigenvectors of these modes from the

FIG. 2. RIXS spectra of La4Ni3O8 as a function of Q at the resonant energy of the magnon, 852.7 eV [41]. Data are shown as red
points, and the fit is shown as a black line, which is composed of the magnetic excitation in orange and the elastic line in blue. The
in-plane Q of the measured spectrum is denoted in the top right of each panel.
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resulting 12 × 12 secular matrix [41], and computed the
weighted sum of the three modes at each Q [64]. To
estimate the magnetic exchange parameters in La4Ni3O8,
we computed the energy of four different spin configura-
tions in the above-mentioned magnetic cell [41], and then
mapped these energies to a Heisenberg model. This was
done using DFT in the generalized gradient approximation
(GGA) implementation as provided in the WIEN2k code
[65,66]. The experimentally determined insulating charge
and spin stripe-ordered ground state [Fig. 1(b)] is obtained
even at the GGA level, given that the exchange splitting is
larger than the bandwidth in this state. Adding a U simply
increases the size of the gap with respect to the GGA
solution, but the nature of the ground state remains the
same [37]. Results presented here are for GGA, but
GGAþ U results are presented in Ref. [41]. This yields
J ¼ 71 meV, Jz ¼ 13.6 meV, and J1 ¼ 10.6 meV.
We fix Jz ¼ 13.6 meV in our model since, because of
our resolution and contamination from the elastic line, we
cannot accurately estimate it from experiment. We
then vary J and J1 to get the best fit. This fit yields
J ¼ 69ð4Þ meV and J1 ¼ 17ð4Þ meV in good agreement
with theory, although the small difference in J (2 meV) is
likely coincidental. These exchange values can be ration-
alized from the single-layer analytic relation (i.e., ignoring
Jz) that Emag ∼ 4S

ffiffiffiffiffiffiffi
JJ1

p
, where Emag is the zone-boundary

magnon energy. We overplot the magnetic dispersion with
our theory analysis in Fig. 3, showing a good level of
agreement. The model also captures the observed softening
that occurs as Q approaches ð− 1

3
;− 1

3
Þ. We also measured

Pr4Ni3O8 [41], which is similar to La4Ni3O8, but metallic
rather than insulating; the results show a lower-intensity
damped magnetic excitation, which is expected in view of
its metallicity [34] and the spin-glass behavior reported for

this material [57]. The paramagnon energy in Pr4Ni3O8 is
only slightly reduced compared to La4Ni3O8. Again, this is
similar to cuprates, where magnon-like excitations are seen
for paramagnetic dopings [67].
Our rather large value of J ¼ 69ð4Þ meV is the principal

result of this Letter. This magnetic exchange is 2.5 times
larger than that of the 1=3 doped nickelate La2−xSrxNiO4,
which also has a diagonal stripe state (with S ¼ 1 d8

magnetic rows and S ¼ 1=2 d7 domain walls), though the
two have comparable J1 [52,68,69]. J for La4Ni3O8 is, in
fact, within a factor of 2 of cuprates, which have among the
largest superexchange of any known material [67,70–72].
This suggests, along with our XAS results, that these
nickelates are strongly correlated charge-transfer materials.
Two questions are apparent: Why is the superexchange in
La4Ni3O8 so large? And what is the relationship between
trilayer nickelates and their infinite-layer counterparts?
Given the 180 degree Ni-O-Ni bonds in the d9 nickelates,

superexchange is the most likely mechanism for generating
their exchange interactions, as in the cuprates. In the
charge-transfer limit, the strength of this interaction
scales as t4pd=Δ3, where tpd is the hopping between the
transition metal x2 − y2 and oxygen pσ orbitals, and
Δ≡ Ed − Ep is the energy difference between them.
Large p − d hopping and a small Δ implies a large
ligand-hole character for the doped holes, as this is
controlled by the ratio tpd=Δ. We therefore fit the O K
prepeak intensity to compare to the literature for
La2−xSrxCuO4 [48] and Nd1−xSrxNiO2 [8] and show the
results in Fig. 4. The prepeak in Nd1−xSrxNiO2 is signifi-
cantly less prominent than in La4Ni3O8 and La2−xSrxCuO4,
but this appears to be primarily due to a broadened prepeak
rather than a lower integrated spectral weight, the broad-
ening perhaps due to a spatially varying doping. The
relative integrated weight per doped hole is 1.00(2):1.74
(5):1.05(10) for La4Ni3O8∶La2−xSrxCuO4∶Nd1−xSrxNiO2,
and the equivalent ratios for the maximum prepeak

FIG. 3. Magnetic dispersion of La4Ni3O8. Black points are the
extracted energies of the magnetic excitation. The gray line is the
fit to the experimental dispersion, which is composed of the
weighted sum of three dispersive magnons, called the acoustic,
middle, and optic modes, which are plotted as blue, orange, and
green lines, respectively. The thicknesses of all three lines
represent the predicted intensity of the modes [41]. The doubling
of the modes from ð− 1

3
;− 1

3
Þ to (0,0) arises from magnetic

twinning [41].

FIG. 4. Comparison of the O K-edge in-plane polarized
prepeak intensity, indicative of oxygen-hybridized holes, be-
tween different d9−δ materials. Solid lines are XAS or EELS. The
data and background (line shape excluding the prepeak) for
Nd1−xSrxNiO2 are from Ref. [8], and the data for La2−xSrxCuO4

are from Ref. [49]. Further details are provided in Ref. [41].
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intensities are 1.00(4):1.85(9):0.37(6). The quoted errors
are the uncertainties from the least-squares fitting
algorithm. The largest systematic error likely arises from
the doping inhomogeneity in the data from Ref. [8].
Thus, La4Ni3O8 has somewhat less admixture than
La2−xSrxCuO4, but the difference is not enough to expect
qualitatively different physics. The ratio we determine is in
good accord with our observed magnetic exchange in
La4Ni3O8 being around half that of the cuprates [67,
71–73]. This difference likely comes from Δ being larger
in La4Ni3O8 compared to La2−xSrxCuO4 (tpd is compa-
rable in the three materials) [74,75]. The situation in
NdNiO2 is less certain, given the large difference of the
ratios (i.e., whether one considers the maximum intensity
or the integrated weight). This will likely only be solved
when higher-quality, more homogeneous Nd1−xSrxNiO2

samples are prepared and studied in detail. Still, it seems
likely that the superexchange in NdNiO2 is smaller,
but still large enough that its potential contribution to super-
conductivity deserves serious consideration. Recent Raman
scattering measurements estimate J ≈ 25 meV [76], which
is consistent with this and which likely arises from Δ being
larger, though the enhanced c-axis coupling and the
screening from the R 5d states, which are predicted to
be partially occupied in NdNiO2, could be playing a role
as well.
In conclusion, we report the presence of a large super-

exchange J ¼ 69ð4Þ meV in La4Ni3O8—the first direct
measurement of superexchange in a d9−δ nickelate. This
superexchange value is within a factor of 2 of values found
in the cuprates, and this, coupled with a substantial O K
prepeak, establishes the charge-transfer nature of this d9−δ

nickelate with substantial d − p mixing. By comparing the
O K-edge XAS spectra of La4Ni3O8 to that of the cuprates
and the infinite-layer nickelate, we establish that trilayer
nickelates represent a case that is intermediate between
them. This result is interesting in view of the widespread
belief that increasing magnetic superexchange might pro-
mote higher-Tc superconductivity [4,34,77]. Studying a
series of layered nickelates would also provide a route to
testing the relevance of superexchange to nickelate super-
conductivity given the variation in their nominal Ni
valence.
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