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This document provides additional details of the sample synthesis, sample characterization, temperature-dependent
phonon intensity data, and fitting of the RIXS spectra.

SAMPLE SYNTHESIS

La2−xSrxCuO4 samples were grown by the traveling-solvent floating-zone method. For each composition, a single
feed rod with a length of 20–25 cm was used. After the growth, the first few centimeters of the crystal rod were
removed and discarded, while the remainder was annealed in flowing O2 at 980◦C for 1 week. Sample surfaces were
prepared by cleaving the samples mechanically to expose a c-axis face. The samples were crystallographically aligned
prior to the measurements RIXS using Laue diffraction. During the RIXS measurements themselves, the θ and χ
angles were further refined by optimizing the CDW intensity as a function of both angles.

SAMPLE CHARACTERIZATION

The superconducting transition temperatures were determined by magnetization measurements in a 1 mT applied
magnetic field (after cooling in zero field) yielding the expected values of TSC = 28, 37, 30, and 10 K, for LSCO12,
LSCO17, LSCO21 and LSCO25, respectively. X-Ray diffraction measurements confirmed excellent sample crystallinity
with crystal mosaics of the order of 0.02◦. The doping level was characterized by angle-resolved photoemssion
spectroscopy (ARPES) [1]. The effective doping was determined to be consistent with the Sr concentration via a tight
binding fitting of the Fermi surface. The topological change in Fermi surface topology was also observed between
LSCO17 and LSCO21. Very similar results have been observed in previous ARPES studies of LSCO [2, 3].

PHONON INTENSITY DEPENDENCE

In Fig. S1 we show that the phonon intensity dispersion is essentially identical at Tc and 100 K.

FITTING OF THE RIXS SPECTRA

In order to illustrate the method and quality of data fitting, we present the fitting result for LSCO17 at low
temperature in Fig. S2. The spectra were fitted with a Pseudo-Voigt function for the elastic peak, an anti-symmetric
Lorentzian function for the bond-stretching (BS) mode and a linear background, all convoluted with energy resolution.
This lineshape is described by 10 parameters, but only 6 parameters are free to vary in the fit. For the Pseudo-Voigt
lineshape describing the elastic peak the center, Gaussian vs. Lorentzian fraction and width are fixed by measurements
of a graphite elastic reference sample, only the amplitude is free to vary. For the anti-symmetric lorentzian lineshape
(Damped Harmonic Oscillator Model) phonon mode, the temperature is fixed, and the center, width and amplitude
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FIG. S1. Phonon intensity as a function of H similar to Fig. 3(c) of the main text, but with the 100 K data overlaid on the
low-temperature data and separated onto different panels. This shows that the phonon intensity is the same at Tc and 100 K
for all the different dopings.

are free. For the linear background, we use a function f(x) = b for x < 0 and f(x) = a ∗ x+ b for x > 0, a and b are
free parameters. Prior to computing the final fit, we performed an initial fit in which the elastic energy was allowed
to vary, which we used to shift the spectra in energy such that the exact elastic energy is exactly zero. Typical values
for the reduced chi-squared statistic are 1.6.
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FIG. S2. Fitting results for LSCO17 at T = TSC . The data is represented by cyan dots and the fit is shown as a black line.
Blue, red and green dashed lines represent the elastic line, phonon mode and background components, respectively. Different
panels show spectra at the reciprocal space location denoted in the top right of the plot (q, 0, L), as described in the main text.
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