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Through a combination of experimental measurements and theoretical modeling, we describe a strongly
orbital-polarized insulating ground state in an ðLaTiO3Þ2=ðLaCoO3Þ2 oxide heterostructure. X-ray
absorption spectra and ab initio calculations show that an electron is transferred from the titanate to
the cobaltate layers. The charge transfer, accompanied by a large octahedral distortion, induces a substantial
orbital polarization in the cobaltate layer of a size unattainable via epitaxial strain alone. The asymmetry
between in-plane and out-of-plane orbital occupancies in the high-spin cobaltate layer is predicted by
theory and observed through x-ray linear dichroism experiments. Manipulating orbital configurations using
interfacial coupling within heterostructures promises exciting ground-state engineering for realizing new
emergent electronic phases in metal oxide superlattices.
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Transition-metal oxides (TMOs) provide a particularly
rich array of physical phenomena and phases stemming from
strong electron-electron interactions between valence d ele-
ctrons [1–7]. In such systems where the orbital, spin, charge,
and structural degrees of freedom are coupled, manipulating
the orbital energies of valence electrons dramatically affects
properties [8]. Orbital polarization in 3d TMOs plays a
crucial role in achieving high-Tc superconductivity in
cuprates [9–11], andmetal-insulator transitions in the nickel-
ates [12–14]. Understanding and controlling the electronic
ground states and their orbital characteristics is crucial in
realizing novel electronic properties [15,16].
The perovskite cobalt oxide LaCoO3 (LCO) is of

particular interest due to its versatile electronic configura-
tion arising from interactions between the various electronic
degrees of freedom. Bulk LCO has a Co3þ ground-state
electronic configuration where six electrons fill the Co 3d
t2g and eg shells. Because of the delicate balance among
crystal field, magnetic exchange, and Hund’s coupling
energies, LCOhasmultiple competing spin states, including
low-spin (S ¼ 0, t62ge

0
g), intermediate-spin (S ¼ 1, t52ge

1
g),

and high-spin states (S ¼ 2, t42ge
2
g), whose ground-state

energies differ by less than 0.1 eV [17–19]. Traditional
approaches to changing the configuration of cobalt spin
states in LCO include changing temperature, pressure,
and epitaxial strain [20,21]. For example, tensile strained
LCO thin films are stabilized in the high-spin state with
ferromagnetic ordering developing due to CoO6 octahedral
distortions and increased Co—O—Co bond angles [22–26].
In addition, theory has elucidated a structure-property
relationship where the electronic structure depends strongly
on the Co—O bond length [27]. More dramatic control of
electronic structure is possible by incorporating TMOs into
thin film heterostructures [28–30], exploiting quantum
confinement [31] and electronic reconstructions [32].
Tuning the local structure of cobaltates and modifying
the underlying energy levels allow access to different spin
and orbital configurations, which can introduce various
electronic and magnetic ground states.
Orbital polarization of high-spin 3d7 Co2þ can be

achieved by inducing epitaxial strain in CoO, but the degree
of the polarization is limited by the small magnitude of
strain induced by the substrate [33]. Here, we realize a
strongly orbital-polarized high-spin 3d7 state in a
ðLaTiO3Þ2=ðLaCoO3Þ2 ½ðLTOÞ2=ðLCOÞ2� heterostructure.
As we show, the charge state of the cobalt is a consequence
of the cross-interface charge transfer from Ti to Co, and
the strong orbital polarization is a consequence of the
layering and structural distortions induced by the charge
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transfer [34]. Our theoretical simulation suggests that the
antiferromagnetic Co spin configuration emerges as a
result of the superexchange interaction between electrons
occupying half-filled orbitals in two confined CoO2 planes.
Judicious design of LCO-based heterostructures allows one
to control the spin and orbital configuration of cobalt and
thus manipulate the macroscopic properties through charge
transfer, interfacial coupling, and dimensional confinement.
Cobaltate thin films and heterostructures were grown on

SrTiO3 (STO) (001) substrates using oxygen plasma
assisted molecular beam epitaxy (MBE). The layering sequ-
ence for the bilayer superlattice is ½ðLTOÞ2=ðLCOÞ2� × 10,
and the single-component thin film consists of 40 unit
cells of LCO. X-ray absorption (XAS) and x-ray linear
dichroism (XLD) measurements are carried out at the beam
line 4-ID-C at the Advanced Photon Source (APS). An
atomic-scale structure determination is performed by meas-
uring crystal truncation rods using high-resolution synchro-
tron x-ray diffraction at the beam line 33-ID-D at the APS.
Real space imaging is performed using scanning trans-
mission electron microscopy (STEM) and electron-energy-
loss spectroscopy (EELS). A JEOLARM200CFwith a cold
field emission gun and double-spherical aberration correc-
tors at the Brookhaven National Laboratory is operated at
200 keV. The TEM specimen is prepared using a focused
ion beam (FIB) lift-out technique with 5 keV Gaþ ion for
final milling. The collection angles for high-angle annular

dark-field STEM imaging are from 68 to 280 mrad. EELS
data are obtainedwith 0.5 eV per channel dispersion. For the
theoretical calculations, we use the projector augmented
wave method [35] and the revised version of the generalized
gradient approximation (GGA) proposed by Perdew et al.
(PBEsol, a revised Perdew-Burke-Ernzerhof GGA that
improves equilibrium properties of densely packed solids
and their surfaces) [36], as implemented in the Vienna
ab initio simulation package software [37]. The GGAwith
Hubbard U parameter ðGGAþUÞ scheme within the
rotationally invariant formalism and the fully localized
limit double-counting formula is used to improve the
description of electronic interactions. A plane wave basis
with a kinetic energy cutoff of 500 eV and a 9 × 9 × 5 k-
point mesh are employed to sample the first Brillouin zone.
We useUTi ¼ 3 eV to fit the optical gap of LaTiO3 (0.2 eV),
in line with previous work [38], and UCo ¼ 2.5 eV to
describe the electronic and magnetic properties of bulk
LaCoO3ðCo3þÞ and CoOðCo2þÞ. The energy gap of LCO
within GGAþ U using this UCo is 0.6 eV, consistent with
the experiment, and the experimental nonmagnetic insulat-
ing phase of bulk LCO is the theoretical ground state for
UCo ≤ 2.5 eV. On the other hand,UCo > 4 eV is needed to
reproduce the gap of bulk CoO. We have considered a wide
range, 0 ≤ UCo ≤ 5 eV, and confirmed that our results are
qualitatively unchanged for UCo ≥ 2 eV.
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FIG. 1. (a) Schematic of the [001]-oriented ðLTOÞ2=ðLCOÞ2 heterostructure grown on top of the STO substrate. (b) Element-specific
STEM-EELS maps for La, Ti, Co, and Tiþ Co of the ðLTOÞ2=ðLCOÞ2 heterostructure. (c) Co and Ti 3d projected density of states
(PDOS) for the periodic ðLTOÞ2=ðLCOÞ2 superlattice from the GGAþU calculations. (d) Co L edge x-ray absorption spectra of the
LCO thin film and the heterostructure from the experiment and the simulated absorption spectrum for bulk CoO. (e) The x-ray
photoemission spectra of the Ti 2p core level for the heterostructure film and the bulk STO substrate.
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The heterostructure studied here consists of two layers of
LTO and two layers of LCO that form an (001)-oriented
2=2 superlattice, ðLTOÞ2=ðLCOÞ2, illustrated in Fig. 1(a).
The MBE growth process avoids intermixing of the layers
to form the La2CoTiO6 double perovskite structure that is
stable in bulk form [39–41]. The structure is characterized
using STEM and EELS [Fig. 1(b) and Fig. S1 in the
Supplemental Material [42]]. The element-specific STEM
image shows two layers of Ti and Co, consistent with
limited interfacial intermixing. Larger scale characteriza-
tion of the structure using x-ray diffraction (Sec. I in the
Supplemental Material [42]) shows superlattice peaks
arising from alternating LTO and LCO layers. The 2=2
superlattice allows us to probe the interfacial phenomena
effectively by having one interface per cobaltate layer,
unlike heterostructures with thicker cobaltate layers, while
maintaining chemical stability at the atomically abrupt
interface between LTO and LCO. The difference in
electronegativity [43,44] between Ti3þ and Co3þ implies
that the electron in the Ti3þ 3dt2g orbital may transfer
across the interface to the Co 3d orbitals, modifying the
oxidation states from Ti3þ to Ti4þ and from Co3þ to Co2þ.
This modification is confirmed by first principles calcu-
lations of the projected density of states (PDOS) for the Co
and Ti atoms in the heterostructure, as shown in Fig. 1(c).
For bulk LCO, the computed PDOS of Co 3d orbitals
consists of empty eg and fully occupied t2 g orbitals. In
contrast, for the ðLTOÞ2=ðLCOÞ2 superlattice, there exist
narrow eg bands occupied below the Fermi level, while the
Ti 3d bands are empty due to a full (formal) electron
transfer from Ti to Co.
In order to experimentally probe this charge transfer, we

measure the XAS at the Co L edge which is sensitive to Co
valence and spin states. The total-electron-yield absorption
spectra for a LCO thin film and the ðLTOÞ2=ðLCOÞ2
superlattice show a significant difference [Fig. 1(d)]. We
observe four peaks A–D located at 775.3, 776.7, 777.9, and
780.0 eV, respectively, at the Co L3 edge XAS of the
heterostructure with relative intensities IA=IC ∼ 0.42, and
IB=IC ∼ 1.01. The spectral shape for the heterostructure
resembles the experimental XAS spectra of various Co2þ
compounds, including CoO [33] and La2CoO4 [45], as well
as the simulated spectra for high-spin Co2þ [45–48]. To
further understand the measurements, we compute the XAS
spectra of bulk CoO [49,50], which has the same oxygen
octahedral coordination as the LCO layers. The positions
and relative intensities for peaks A–D of the superlattice
absorption spectra are reproduced well by the simulation,
indicating that the heterostructure is composed mainly of
the Co2þ valence state. The x-ray photoemission spectra of
the Ti 2p core level are measured for the bulk STO
substrate and the LTO=LCO superlattice to further illus-
trate the full charge transfer from Ti to Co. As seen in
Fig. 1(e), the heterostructure has a Ti4þ oxidation state,
with Ti 2p3=2 and 2p1=2 peaks located at 458.8 and

464.5 eV, respectively. Spin-orbit splitting for the super-
lattice is 5.71� 0.10 eV, consistent with the spectra of
Ti4þ in the fully oxidized STO bulk reference with spin-
orbit splitting of 5.60� 0.10 eV. Again, the primarily Ti4þ
valence state of the superlattice is consistent with cross-
interface electron transfer from Ti to Co.
The interfacial charge transfer and resulting local electric

field induce a large picoscale structural deformation in the
ðLTOÞ2=ðLCOÞ2 superlattice. The atomic structure of the
films are determined from an analysis of the measured
crystal truncation rod intensities using synchrotron-based
x-ray diffraction, and the phases are derived with the
coherent Bragg rod analysis (COBRA) phase retrieval
technique [51,52]. A more detailed description can be
found in Sec. III of the Supplemental Material [42]. The
ðLTOÞ2=ðLCOÞ2 heterostructure [Fig. 2(b)] shows a sur-
prisingly large oxygen displacement at the interface, where
the apical oxygen at the interface is pulled towards the Ti
atom by ∼0.3 Å, elongating the CoO6 octahedra in the out-
of-plane (OOP) direction. In contrast, for the LCO thin
film, the measured atomic structure [Fig. 2(a)] shows no
significant octahedral deformation other than the in-plane
elongation of the lattice due to the 2.7% tensile strain
induced by coherent epitaxy on STO (001). The ratio of the
in-plane (IP) Co—O bond length and the OOP Co—O
bond length ðdOOP=dIPÞ is 0.94 in the LCO thin film. The
large oxygen displacement in the heterostructure gives
dOOP=dIP ¼ 1.14, significantly different from the LCO thin
film. These observations are very close to the computed
relaxed GGAþU structure [Fig. 2(c)], where an oxygen
displacement is evident at the interface: the out-of-plane
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FIG. 2. A slice along a [100] plane through the B site from a
COBRA-derived 3D electron density map for (a) the eight unit-
cell thick LCO thin film and (b) a single repeat of a
ðLTOÞ2=ðLCOÞ2 heterostructure. (c) Calculated atomic structure
for the ðLTOÞ2=ðLCOÞ2 heterostructure from GGAþ U. Both
calculated and experimentally determined structures for the
heterostructure show the large atomic displacements due to the
electronic reconstruction at the cobaltate-titanate interface. La
atoms are not visible in the experimental data due to the choice of
the planar slice, but their z coordinates as extracted from the full
dataset are indicated by white dashed lines in (b).
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Co—O bond length between the CoO2 planes is 2.02 Å,
while the bond length between the CoO2 and TiO2 planes is
2.28 Å, with dOOP=dIP ¼ 1.13. The predicted and measured
physical structure is a consequence of the interfacial charge
reconstruction at the cobaltate-titanate interface that intro-
duces an internal polar electric field pointing towards the
cobalt cations, creating displacements of the apical oxygens
in the CoO6 octahedra.
Theoretically, we expect that the significant elongation

of the OOP Co—O bond will lead to an energetic splitting
within both the t2g and eg manifolds: a large orbital
polarization will be induced as the on-site energy levels
of the OOP egð3z2 − r2Þ, t2gðyz; zxÞ orbitals are lowered
relative to the IP egðx2 − y2Þ and t2gðxyÞ orbitals, respec-
tively, changing the orbital filling of the 3d orbitals. For the
Co2þð3d7Þ valence state in the heterostructure, we consider
an additional effect where the Hubbard U coupling drives
the Co to adopt a high-spin configuration, where all 3d
spin-up orbitals are occupied, two holes occupy spin-down
eg orbitals, and one hole occupies a spin-down t2g orbital.
The orbital polarization in the heterostructure puts the t2g
hole mainly in the dxy orbital [Fig. 3(c)]. The orbital
polarizations of the LCO thin film and the ðLTOÞ2=ðLCOÞ2
superlattice are measured using soft XLD. Exploiting the
symmetry of the 3d orbitals and electric dipole selection
rules, the occupation of IP and OOP orbitals can be probed
independently by selecting the polarization parallel and
perpendicular to the sample surface, respectively [53]. The
absorption spectra for IP and OOP x-ray polarizations are
shown in Figs. 3(a) and 3(b). The obvious dichroic

absorption signal for the heterostructure, with hole occu-
pancy higher for the IP polarization, indicates the high-spin
atomic orbital scheme shown in Fig. 3(c).
To quantify the orbital polarization, we use the OOP to

IP XLD intensity ratio r that describes the ratio of hole
occupancies of OOP and IP orbitals in the Co 3d manifold:

r ¼ IOOP
IIP

¼ 4hz2 þ 3ðhyz þ hzxÞ
hz2 þ 3hx2−y2 þ 3hxy þ 1.5ðhyz þ hzxÞ

; ð1Þ

where hi refers to the hole occupancy of orbital i. For a
completely orbital-degenerate system without orbital
polarization within the t2g and eg manifolds, we have
r ¼ 1, indicating equal hole occupancies in IP and OOP
orbitals. A more detailed ab initio PDOS for the
ðLTOÞ2=ðLCOÞ2 superlattice [Fig. 3(d)] elucidates the
strong energetic asymmetry of the Co 3d states based on
the geometry of the orbitals: spin-down t2g bands of yz, zx
character lie below the Fermi level, while the narrow band of
primarily xy character [red in Fig. 3(d)] lies above the Fermi
level. From the ðLTOÞ2=ðLCOÞ2 superlattice absorption
spectra [Fig. 3(b)], wemeasure r ¼ 0.70� 0.03, which is in
the opposite direction of the value obtained from the LCO
thin film, demonstrating the heterostructuring origin of the
orbital polarization (the theoretical value is r ¼ 0.87). Note
that for the fully orbital-polarized heterostructure where the
spin-down xy orbital is completely unoccupied, Eq. (1)
yields an r value of 0.57. For the LCO thin film, wemeasure
r ¼ 1.06� 0.03, indicating nearly degenerate 3d orbitals
with a small dichroic signal due to the tensile strain from
the substrate (the theoretical value is r ¼ 1.16; see Sec. II
in the Supplemental Material for details [42]). We note
that for the epitaxial LCO film, the tensile strain from the
STO substrate shortens the OOP lattice constant of LCO
ðdOOP=dIP ¼ 0.94Þ, calculated from the atomic positions
derived from the center of the electron density map in
Fig. 2(a). We expect the energy level of the OOP orbitals to
increase relative to the IP orbitals for the epitaxial LCO thin
film, leading to r > 1, as observed.
The consequences of this electronic structure on the spin

structure can be elucidated by theory. The aligned 3z2-r2,
x2-y2 orbitals of the neighboring Co atoms along the x, y, z
direction have a strong hybridization with the intermediate
oxygen and form a strong Co─O─Co bond, giving rise to
spin ordering. The superexchange interactions between the
half-filled, overlapping 3z2-r2, x2-y2 orbitals gives a G-type
antiferromagnetic spin ordering of the two cobalt layers
according to our GGAþU calculations. Experimentally
[Fig. 4(a)], we find the absence of ferromagnetic ordering
for the heterostructure, while the LCO thin film shows a
ferromagnetic transition at around 77 K. The GGAþ U
calculation has been repeated for a variety of strains and
magnetic configurations for the heterostructure, but the
qualitative finding of a G-type antiferromagnetic insulating
ground state with a similar electronic configuration (strong
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orbital polarization and high spin) is consistent for all strain
states.
Finally, the ground state is a charge-transfer Mott-like

insulator where the valence band maximum is of Co 3d
character, while the conduction band minimum is of Ti 3d
character [Fig. 1(c)]. The opening of the energy gap
happens via an energetic splitting (i.e., symmetry breaking)
of the energies inside the spin-down Co2þ t2g manifold: the
occupied and unoccupied t2g states become split by ∼2 eV
[Fig. 3(d)] due to the electronic interaction terms in the
DFTþ U method. We note that breaking the crystal field
symmetry via structural distortion is essential for lifting the
orbital degeneracy and realizing the strong orbital polari-
zation within the t2g manifold, but it is not sufficient to
realize a band gap in this high-spin system (i.e., the
contribution of the U term is essential). Experimentally,
an insulating ground state of the heterostructure is observed
in temperature-dependent electrical transport measure-
ments. As seen in Fig. 4(b), the ðLTOÞ2=ðLCOÞ2 super-
lattice displays insulating behavior, with a resistivity of
∼300 Ω cm, giving a sheet resistance of ∼100 MΩ at
400 K. The high-temperature part of the figure shows that
the log of resistivity is linearly proportional to the inverse of
temperature, consistent with hopping transport with an
activation of Eg ∼ 1.1 eV.
In summary, we find in this Letter a strongly orbital

polarized insulating state within a ðLTOÞ2=ðLCOÞ2 het-
erostructure with antiferromagnetic spin ordering. We
observe that the charge-transfer, orbital-polarization, and
structural distortion patterns related to this insulating state
as predicted by theory are found in experimental mea-
surements on the heterostructure. This illustrates the
possibility and feasibility of new, unique spin and orbital
states in oxide heterostructures that explicitly use the
motifs of orbital polarization, charge transfer, and layer
confinement. Systematic study by changing the super-
lattice component layer thickness will enable us to modify
the degree of interfacial charge transfer and to investigate

its effect on the orbital polarization. Furthermore, as seen
in the cuprates, this may motivate the search for a
transition to correlated metallic or superconducting phases
upon doping this antiferromagnetic insulator. The wide
range of tunable control parameters uniquely available in
perovskite heterostructures will enable us to target new
electronic materials.
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