
Supplementary Material for “Hamiltonian parameter inference from resonant inelastic
x-ray scattering with active learning”

Marton K. Lajer, ,1, ∗ Xin Dai ,2 Kipton Barros ,3

Matthew R. Carbone ,2 S. Johnston ,4, 5, † and M. P. M. Dean 1, 4, ‡

1Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
2Computing and Data Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, USA
3Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA

5Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, USA
(Dated: October 20, 2025)

S1. DETERMINING SYMMETRY LABELS

A. Quantum numbers

Let H be a Hilbert space, and Qi, i ∈ {1, 2, . . . nq} mutually commuting operators acting in H such that

[Qi, Qj ] = 0, ∀i, j.
The set {Qi} has a common set of eigenvectors |{qi} ; ri⟩ labeled by the set of eigenvalues Qj |{qi} ; ri⟩ = qj |{qi} ; ri⟩.
The numbers qi are called quantum numbers. The index ri runs through the degenerate subspaces with completely
coinciding quantum numbers {qi}.
EDRIXS works in the Fock basis where basis states are labeled by the occupation numbers of individual orbitals.

However, we are often interested in the eigenbasis of operators like Sz, S
2, Lz, L

2, Jz = (Lz + Sz) or J2. These
operators don’t all commute with the occupation number operators, so a basis vector in the occupation basis will not
generally have a definite angular momentum eigenvalue.

Let us construct an auxiliary operator A such that

A =

nq∑
i=1

aiQi

with ai chosen to be algebraically independent. For example, a convenient choice is to take ai = η
√
pi, where η is

an arbitrary constant and pi is the sequence such that p1 = 1 and pi is the i − 1 smallest prime number for i > 1.
If the matrix elements of Qi are computed in the occupation basis, the unitary matrix built from the eigenvectors of
A provides the basis transform to the basis with definite symmetry labels. The set of q values labeling a degenerate
subspace can by obtained from the eigenvalues of A:

A
∣∣ϕAi 〉 = η

nq∑
i=1

√
piqi

∣∣ϕAi 〉
using e.g. simple table lookup. Alternatively, one can act the symmetry operators directly, Qi

∣∣ϕAj 〉 = q
(j)
i

∣∣ϕAj 〉.
B. Discrete symmetry labels

To decompose the degenerate subspaces of A further, we consider random symmetric matrices R{qi} with matrix
elements sampled from an uniform distribution. We intend to build matrices invariant with respect to a discrete
symmetry group G. To this end, we construct the operator

R̄{qi} =
1

|G|
∑
g∈G

D (g)R{qi}D
† (g)
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It is easy to see that R̄{qi} is invariant with respect to G by conjugating it with an arbitrary group element g′ ∈ G:

D (g′) R̄{qi}D
† (g′) =

1

|G|
∑
g∈G

D (g′)D (g)R{qi}D
† (g)D† (g′)

=
1

|G|
∑
g∈G

D (g′g)R{qi}D
† (g′g)

=
1

|G|
∑
h∈G

D (h)R{qi}D
† (h)

= R̄{qi}.

Since R̄{qi} commutes with all group elements, its eigenvectors are restricted to transform within its degenerate
subspaces. A priori it could happen that one such subspace contains multiple irreducible representations (irreps).
However, as we constructed R with random matrix elements, it is guaranteed (with probability ∼ 1 up to machine
precision) that R̄{qi} does not have accidental degeneracies in its eigenvalues apart from that strictly required by its
group invariance. The unlikely event of an accidental degeneracy is under control (see below) and can be corrected by
repeating with another random matrix R. Therefore the eigenvectors of R̄{qi} can be assumed to transform according
to individual irreps of G. In turn, the eigenvectors can be labeled by the particular irrep copy they belong to.

Given the character table of the group G, we construct the square matrix T with matrix elements corresponding to
the entries of the character table. We then pick an exemplar group element from each conjugate class and calculate
the trace of their representations in the degenerate subspace of R̄{qi} with eigenvalue λ. Thus, in each subspace λ,
we get a vector Xλ of characters. The multiplicity of each irrep in the subspace is given by the expression

µλ = XλT−1. (1)

If the degenerate subspace indeed corresponds to an irrep, the vector µ is a standard basis vector with one element
being 1 and the rest are zeros. We can read the type of the irrep by comparing the position of the one in µ and the
arrangement of the rows of the character table.

Let us consider a Hamiltonian H acting in the Hilbert space H. We insist that H is not necessarily invariant under
the symmetry operations generated by Qi:

[H,Qi] ̸= 0.

We also do not require invariance with respect to the finite group G. Instead, after we obtain the eigenvectors of
H |ψ⟩ = Eψ |ψ⟩, we calculate the squares of overlaps between |ψ⟩ and the completely annotated basis vectors |ϕqi;λ;r⟩

wψ,qi;λ =

dimDλ∑
r=1

|⟨ψ|ϕqi;λ;r⟩|
2
. (2)

Since the wavefunction is normalized and the annotated vectors span the Hilbert space H,∑
qi;λ

wψ,qi;λ = 1. (3)

The weight of any combination of symmetry labels in |ψ⟩ is easily calculated by summing up the appropriate subset
of elementary weights wψ,qi;λ.

We note that projections of |ψ⟩ to isotypic subspaces of the group G corresponding to an irrep Γ could also be
calculated by the projection formula (see e.g. Ref. [1])

∑
λ∈copies
of irrep Γ

wψ,qi;λ =

∣∣∣∣∣∣dimΓ

|G|
∑
g∈G

χΓ(g)∗ ⟨ψ|Dqi(g)|ψ⟩

∣∣∣∣∣∣
2

, (4)

where Dqi(g) is the (generally reducible) representation of G that acts in the degenerate subspace {qi} of the matrix
A. This approach avoids the construction of the commutant R̄, but does not give access to weights in individual irrep
copies. Such extra information can sometimes be useful, as we discuss in Section S1D.

This concludes our general strategy of eigenstate annotation. We stress that the commutant method is applicable
for any finite group.1

1 Although tangential to the present discussion, we remark that this method entails a didactic, systematic way to obtain character
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C. The octahedral group

We focus on the octahedral group Oh, and specifically its orientation-preserving subgroup O. The group Oh is of
order 48, while the group O has 24 elements. The reason of our focus is that we intend to annotate the states of the
initial Hamiltonian, which are linear combinations of d-shell excitations. Therefore, all eigenfunctions are invariant
under inversion.

The group elements of the octahedral group take the form

gα = eiαxLx+iαyLy+iαzLz .

Elements of the group O are organized into 5 conjugacy classes as follows.

1. (6C4 – order 4) 6 rotations about the cube edges with angles nπ2 , n ∈ {1, 3}:

α3n−2 = n
π

2
(1, 0, 0) , α3n−1 = n

π

2
(0, 1, 0) , α3n = n

π

2
(0, 0, 1) .

2. (3C2 ∼ (C4)
2 – order 2) 3 rotations about the cube edges with angle π:

α4 = π (1, 0, 0) , α5 = π (0, 1, 0) , α6 = π (0, 0, 1) .

3. (8C2 – order 2) 8 rotations about the face diagonals with angle π:

α10 = π (1, 1, 0) , α11 = π (1,−1, 0) , α12 = π (1, 0, 1)

α13 = π (1, 0,−1) , α14 = π (0, 1, 1) , α15 = π (0, 1,−1) .

4. (6C3 – order 3) 6 rotations about the body diagonals with angle 2π
3 n, n ∈ {1, 2}:

α4n+12 =
2π

3
n (1, 1, 1) , α4n+13 =

2π

3
n (1, 1,−1) ,

α4n+14 =
2π

3
n (1,−1, 1) , α4n+15 =

2π

3
n (−1, 1, 1) .

5. (E – order 1) the identity,

α0 = (0, 0, 0) .

The remaining 24 elements and further 5 conjugacy classes of Oh are constructed multiplying the vectors above by
−1.

Since there are 5 conjugacy classes in the group O, there are 5 inequivalent irreps. The character table of the group
O is shown on Table S1.
The inverse matrix T−1 of Eq. (1) takes the form

T−1 =
1

24


1 8 6 6 3

1 8 −6 −6 3

2 −8 0 0 6

3 0 −6 6 −3

3 0 6 −6 −3

 .

TABLE S1. Character table of the group O ∼= S4

E 8C3 6C2 6C4 3C2

A1g 1 1 1 1 1

A2g 1 1 -1 -1 1

Eg 2 -1 0 0 2

T1g 3 0 -1 1 -1

T2g 3 0 1 -1 -1

tables from multiplication tables of finite matrices. One then starts by constructing the regular representation of dimension |G|. All
inequivalent irreps are present in the regular representation. Solving for the spectrum of R′ provides the invariant subspaces of the
group. The characters are then obtained from the traces of group elements projected into the invariant subspaces. This method allows
the computation of character tables for groups of order up to a few tens of thousands on a PC, depending on available memory.
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D. Weights in individual irreducible representation copies

Let G be a finite group with irreps labeled by α. Let D be a (reducible) representation of the group. We can
decompose D into isotypic blocks Dmα

α as

D =
⊕
α

Dmα
α ,

where Dα denotes an irrep and mα is its multiplicity in D, that is

Dmα
α = D(1)

α ⊕D(2)
α ⊕ · · · ⊕D(mα)

α .

The decomposition of D into isotypic blocks is unique. However, the decomposition of an isotypic block into its
component irreps is only fixed up to O(mα) orthogonal transformations. To see this, let us consider an arbitrary
group element g ∈ G. The representation of g according to the irrep Dα is Dα (g). If the irrep is nα dimensional, then
Dα (g) is an nα × nαmatrix. In other words, we can introduce a set of nα orthonormal vectors eα,i, i ∈ {1, 2, . . . nα} ,
so that

Dα (g) ≡
∑
ab

(eα,a ◦ eα,b) [Dα (g)]ab .

A vector vα is said to transform according to the irreducible representation Dα, if

vα =

dimDα∑
i=1

eα,ivα,i.

The transformation of v by the group element g is then written as

Dα (g) v =

dimDα∑
ab=1

(eα,a ◦ eα,b) [Dα (g)]ab

dimDα∑
i=1

eα,ivi =

dimDα∑
a,i=1

eα,a [Dα (g)]ai vi. (5)

Likewise, the representation of g in D is written as

D (g) =
∑
α

mα∑
n=1

dimDα∑
ab=1

(
e(n)α,a ◦ e

(n)
α,b

)
[Dα (g)]ab .

The core of the redundancy is that within each isotypic block, we can introduce a new set of basis vectors,

ẽ(k)α,a =

mα∑
i=1

c
(k)
i e(i)α,a;

mα∑
i=1

∣∣∣c(k)i

∣∣∣2 = 1.

The normalization condition of the coefficients c
(k)
i ensures that the set of basis vectors

{
ẽ
(k)
α,a

}
is also orthonormal.

Let us consider a generic vector

vmα =

mα∑
n=1

dimDα∑
i=1

e
(n)
α,iv

(n)
mα,i.

The projection amplitude of the vector vmα onto the irrep D
(k)
α is

wk (vmα) =

dimDn∑
j=1

e
(k)
α,j

mα∑
n=1

dimDα∑
i=1

e
(n)
α,iv

(n)
mα,i =

dimDα∑
j=1

v
(k)
mα,j . (6)

What is the largest amplitude of vmα in a single irrep? To answer this, we need to take into account the redundancy

of the definition of irreps. The amplitude on a transformed irrep D̃
(k)
α takes the form

w̃k (vmα) =

dimDn∑
j=1

ẽ
(k)
α,j

mα∑
n=1

dimDα∑
i=1

e
(n)
α,iv

(n)
mα,i =

mα∑
l=1

c
(k)
l

dimDn∑
j=1

v
(l)
mα,j =

mα∑
l=1

c
(k)
l wl (vmα) . (7)
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We would like to calculate

max
∥c∥2=1

mα∑
l=1

clwl (vmα) = max
∥c∥2=1

dimDα∑
j=1

mα∑
l=1

v
(l)
mα,j

cl =

 max
∥c∥2=1

dimDα∑
j=1

mα∑
l=1

v
(l)
mα,jcl

2


1
2

. (8)

Introducing Vlj = v
(l)
mα,j , we then obtain

max
∥c∥2=1

mα∑
l=1

clwl (vmα) =

 max
∥c∥2=1

mα∑
l,p=1

cl

dimDα∑
i,j=1

VljV
†
ip

 cp

 1
2

=

λmax

dimDα∑
i,j=1

VljV
†
ip

 1
2

. (9)

This result is independent of the initial basis chosen and well-defined.
It can be useful to know the maximal weight of a single irrep copy in an eigenvector. For example, this can provide

useful information on the shape of the electron density. If the (multiparticle) eigenvector is dominated by a single
irrep, the electron density will be reminiscent of the geometry of a single-particle wavefunction.

S2. FURTHER DETAILS OF THE FITTING PROCEDURE AND RESULTS

In this section, we provide several additional plots that characterize the performance and details of our fitting
procedure.

A. NiCl2
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FIG. S1. NiCl2: Decrease of the sum normalized L1 distance function for 60 runs of 1000 iterations
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FIG. S2. Top: distribution of 11 GPR evaluations with d ≤ 1.2χ2
min,GPR for NiCl2. Bottom: results of subsequent greedy

optimization starting from the 11 best GPR points. The chosen point is denoted by a gray cross (×).
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FIG. S3. NiCl2: The behavior of various distance measures around the fine-tuned minimum. Solid red: L1 sum normalized,
dashed blue: L1 maximum normalized, dashed orange: L2 sum normalized, dashed green: magnitude of gradient, maximum
normalized The fit is highly sensitive to initial Slater and crystal field parameters but weakly depend on intermediate state
parameters, especially spin-orbit couplings.
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B. Fe2O3
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FIG. S4. Top: Decrease of the maximum normalized L1 distance function for Fe2O3 over 60 runs of 1000 iterations. Bottom:
distribution of the best 28 GPR evaluations serving as starting point of the greedy refinement.
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FIG. S5. Fe2O3: The behavior of various distance measures around the fine-tuned minimum. Solid red: L1 maximum
normalized, dashed blue: L1 sum normalized, dashed orange: L2 sum normalized, dashed green: magnitude of gradient,
maximum normalized. The fit is highly sensitive to initial Slater and crystal field parameters but has a weaker dependency on
intermediate state parameters, especially the spin-orbit coupling ζn.
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C. Ca3LiOsO6
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FIG. S6. Ca3LiOsO6: Decrease of the sum normalized L1 distance function for 60 runs of 1000 iterations
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FIG. S7. Left: distribution of 24 GPR evaluations with d ≤ 1.06χ2
min,GPR for Ca3LiOsO6. Right: results of subsequent greedy

optimization starting from the 24 best GPR points. The final accepted point is denoted by a gray cross (×).
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FIG. S8. Ca3LiOsO6: The behavior of various distance measures around the fine-tuned minimum. Solid red: L1 sum normalized,
dashed blue: L1 maximum normalized, dashed orange: L2 sum normalized, dashed green: magnitude of gradient, maximum
normalized. The fit is highly sensitive to initial Slater and crystal field parameters but has a weaker dependency on intermediate
state parameters.

[1] M. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory. Application to the Physics of Condensed Matter (Springer,
2008).

https://doi.org/10.1007/978-3-540-32899-5

	Supplementary Material for ``Hamiltonian parameter inference from resonant inelastic x-ray scattering with active learning''
	Determining symmetry labels
	Quantum numbers
	Discrete symmetry labels
	The octahedral group
	Weights in individual irreducible representation copies

	Further details of the fitting procedure and results
	NiCl2
	Fe2O3
	Ca3LiOsO6

	References


