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Hamiltonian parameter inference from resonant inelastic x-ray scattering with active learning
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Identifying model Hamiltonians is a vital step toward creating predictive models of materials. Here, we com-
bine Bayesian optimization with the EDRIXS numerical package to infer Hamiltonian parameters from resonant
inelastic x-ray scattering (RIXS) spectra within the single atom approximation. To evaluate the efficacy of our
method, we test it on experimental RIXS spectra of NiPS3, NiCl2, Ca3LiOsO6, and Fe2O3, and demonstrate that
it can reproduce results obtained from hand-fitted parameters to a precision similar to expert human analysis
while providing a more systematic mapping of parameter space. Our work provides a key first step toward
solving the inverse scattering problem to extract effective multi-orbital models from information-dense RIXS
measurements, which can be applied to a host of quantum materials. We also propose atomic model parameter
sets for two materials, Ca3LiOsO6 and Fe2O3, that were previously missing from the literature.
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I. INTRODUCTION

Quantum materials are at the forefront of condensed matter
research, due to their rich physics and potential as key com-
ponents of future technologies [1–4]. These systems are often
governed by quantum fluctuations and strong many-body
interactions, which are not well described by conventional
single-particle theories or ab initio methods. As such, a cen-
tral paradigm for progress in quantum materials research has
been to identify minimal effective models [5] that capture a
material’s low-energy properties while remaining tractable.
Leveraging such models is also a powerful way to understand
and predict new material properties and identify broader orga-
nizing principles.

Reliably identifying a valid minimal effective model for a
given system can be extremely challenging. A paradigmatic
example of this is the open question of whether the single-
band Hubbard model is the correct low-energy model for
high-Tc cuprates [6–11]. Other examples include magnetic van
der Waals (vdW) materials like NiPS3 and NiI2, which host
novel many-body excitons that depend crucially on the mag-
netic state of the lattice [12–14]. Despite extensive studies,
the electronic character, mobility, and magnetic interactions
of these excitons are still being debated [12,13,15], in part be-
cause their low-energy Hamiltonian has yet to be conclusively
identified.

Theoretically, one can attempt to derive an effective low-
energy model from a high-energy Hamiltonian by integrating
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out various degrees of freedom. However, strongly correlated
systems often exhibit a near-degeneracy of low-energy states
that are easily affected by perturbing interactions. This situa-
tion can easily bias results if small-but-relevant interactions
are not included in the downfolding process. Alternatively,
one can attempt to derive a low-energy model using pertur-
bation theory; however, in some cases, the resulting effective
couplings can become nonanalytic functions of the high-
energy model parameters [16].

An alternative line of attack is to take a data-driven
approach in the so-called “inverse scattering problem,”
where one attempts to extract the correct effective low-
energy Hamiltonian from spectroscopic measurements. This
approach has been bolstered by recent advances in instru-
mentation for spectroscopic techniques such as photoemission
and inelastic neutron, electron, and photon scattering spec-
troscopies, as well as the development of new many-body
algorithms. The former allows researchers to collect a large
amount of high-quality data for a material in a short time,
while the latter provides new capabilities for predicting the
spectra for a proposed Hamiltonian (the “direct scattering
problem”). In real experiments, the inverse scattering problem
is particularly relevant as model parameters are not known a
priori, and obtaining them from first-principles calculations is
often a challenging, if not impossible, task. Today, many prac-
titioners of inverse scattering will hand-tune the parameters of
the model to match experimental data. Fitting data by hand
is laborious, requires considerable expertise, and can be error
prone since humans can only visually inspect a rather modest
number of candidate solutions.

The past few decades witnessed rapid growth of avail-
able computational resources, accompanied by the swift
development of sophisticated algorithms to solve the direct

2469-9950/2025/112(15)/155167(16) 155167-1 ©2025 American Physical Society

https://orcid.org/0000-0002-1168-8598
https://orcid.org/0000-0002-3235-1038
https://orcid.org/0000-0002-1333-5972
https://orcid.org/0000-0002-5181-9513
https://orcid.org/0000-0002-2343-0113
https://orcid.org/0000-0001-5139-3543
https://ror.org/02ex6cf31
https://ror.org/02ex6cf31
https://ror.org/01e41cf67
https://ror.org/00xzqjh13
https://ror.org/00xzqjh13
https://crossmark.crossref.org/dialog/?doi=10.1103/tnqm-ttj3&domain=pdf&date_stamp=2025-10-29
https://doi.org/10.1103/tnqm-ttj3


MARTON K. LAJER et al. PHYSICAL REVIEW B 112, 155167 (2025)

scattering problem. At the same time, advances in machine
learning have had a tremendous impact on the materials sci-
ence community [17–19]. In particular, new insights from
machine learning approaches [16,17,19–31] have made it
possible to attack the inverse scattering problem from a
purely data-driven framework. Inelastic neutron scattering
(INS) provides a suitable testing ground for developing this
approach, as its cross-section is well understood, and highly
efficient direct solvers are available for a broad class of
materials [32–35].

Since INS is very sensitive to magnetic excitations, the
above-mentioned experimental efforts have so far primarily
focused on extracting low-energy spin Hamiltonians for mag-
netic insulators [36–38]. Recent works established machine
learning methods in the context of x-ray spectroscopy as
well. In x-ray absorption spectroscopy (XAS), artificial neural
networks have been utilized for parameter inference [39] and
surrogate models for the direct solver [40], while adversarial
Bayesian optimization was used for active sampling [41].
Bayesian optimization was also used for experimental acqui-
sition in x-ray absorption near edge structure spectroscopy
(XANES) [42,43]. Our work extends these efforts to resonant
inelastic x-ray scattering (RIXS) data, which allows us to
access a much broader range of materials and Hamiltoni-
ans. RIXS is a photon-in photon-out spectroscopic method
in which the energy, momentum, and polarization of an in-
coming x-ray photon are transferred to a material’s intrinsic
momentum-resolved spin, charge, orbital, and lattice excita-
tions [4,44–50]. Due to its resonant nature, RIXS can study
small samples, including monolayers, while still maintaining
bulk sensitivity. RIXS is also suitable for monitoring ultra-fast
responses of material in pump-probe experiments [51,52].

RIXS experiments have access to a large energy win-
dow spanning from ≈0.02–10 eV and thus provide access
to both high- and low-energy sectors of a given material.
This aspect makes it an ideal tool for the inverse scattering
problem as it can be used to extract effective models for
different energy scales. Moreover, methods for computing
RIXS spectra for correlated systems have achieved a degree of
standardization and become widely available with packages
like EDRIXS [53], QUANTY [54], and CLEARIXS [55]. Given
the maturity of the experimental and numerical methods, the
time is right to begin developing systematic approaches for
the RIXS inverse scattering problem. Here, we undertake such
an effort by employing Bayesian optimization with EDRIXS,
an exact diagonalization-based open-source RIXS solver [53],
to predict model Hamiltonian parameters from experimen-
tally measured spectra. We focus on the single ion model,
which can provide quantitative descriptions of dd excitations
in transition metal complexes. We demonstrate its power on
experimental spectra of NiPS3 [13], NiCl2 [14], Fe2O3 [56],
and Ca3LiOsO6 [57]. The resulting parameters are then used
to annotate and predict the properties of experimentally ob-
served peaks, including their dependence on temperature and
polarization. This work provides the foundation for a fully
automated solution to the RIXS inverse scattering problem.

The paper is organized as follows: Sec. II A describes
the atomic approximation used to model the RIXS spectra.
Section II B introduces the active learning techniques used to
solve the inverse scattering problem. Section III describes how

our methods combine the techniques above to infer Hamilto-
nians from RIXS data. Section IV presents results for several
compounds that have been studied previously in the literature.
Finally, Sec. V provides some concluding remarks and discus-
sion.

II. METHODS

A. RIXS modeling

We compute RIXS using the EDRIXS package [53,58]. This
software implements the Kramers-Heisenberg (KH) equation,
which is the result of treating the photon-matter interaction
using second-order perturbation theory.1 Denoting the mo-
mentum, energy, and polarization of the incoming (outgoing)
x rays as h̄k, h̄ωk, and ε̂ (h̄k′, h̄ωk′ , and ε̂′), respectively, the
intensity for RIXS can be written as

Iεε′ (h̄ωk, h̄ωk′ , k, k′; T )

∝ 1

Z (T )

∑
i

e−Ei/(kBT )
∑

f

|M f i|2δ(E f + h̄ωk′ − Ei − h̄ωk).

(1)

Here, M f i represents the matrix element from the system’s
initial state i with energy Ei to its final state f with energy
E f via an intermediate state with a core hole, and Z (T ) =∑

i e−Ei/(kBT ) is the partition function at temperature T . kB is
the Boltzmann constant.

The examples considered in this work correspond to L-
edge RIXS, which involves a d-electron valence state and a 2p
core hole. We wish to compute the so-called dd excitations,
where the final states entail a reconfiguration of electrons
within the 3d manifold, and which manifest as peaks at photon
energy loss Eloss = h̄(ωk − ωk′ ). The matrix element for RIXS
within the KH formalism is given by

M f i =
∑

n

〈 f |D†
k′ ε̂′ |n〉 〈n|Dkε̂

|i〉
En − Ei − h̄ωk + i�n/2

, (2)

where �n/2 is the inverse core-hole lifetime in units of energy
and En is the energy of the intermediate state. Dkε̂

is the
operator describing the absorption of a photon, promoting
a core electron from a 2p state into the d valence states.
Similarly, D†

k′ ε̂′ describes the photon emission process via a
d to 2p transition. |i〉 and | f 〉 are the eigenstates of the initial
state Hamiltonian Ĥi, whereas |n〉 represents the eigenstates
of the intermediate state Hamiltonian Ĥn with a core hole.
Due to the attractive potential caused by the core hole, the
cross-section is dominated by local transitions, so we take the
common approximation of treating the process in the atomic
limit, where transitions occur within effective local 3d orbitals
[4].

Adopting the second quantization formalism, Ĥi and Ĥn

take the general form

Ĥ =
∑
αβ

tαβ f̂ †
α f̂β +

∑
αβγ δ

Uαβγ δ f̂ †
α f̂ †

β f̂δ f̂γ , (3)

1For a detailed derivation of this expression from the light-matter
interaction, we refer the reader to the review by Ament et al. [48].
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where the indices run through atomic valence and core or-
bitals and f̂ †

α creates an electron in spin-orbital α. The first
term of Eq. (3) includes the crystal field as well as spin-orbit
coupling and, if appropriate, an applied magnetic field. Here
we consider the cubic case in which tαβ is diagonal in the basis
of real spherical harmonics: it has eigenvalues 6Dq in the eg

orbitals (dx2−y2 and dz2 ) and −4Dq for the t2g orbitals (dxy, dxz

and dyz). Valence band spin-orbit coupling for the d states in
the initial (intermediate) state is parameterized by ζi (ζn). The
core hole spin-orbit coupling is parameterized by ζc.

The second term of Eq. (3) accounts for the Coulomb in-
teractions with the d shell and between the p and d shells and
is parameterized by Slater integrals [59]. The relevant terms
for the initial Hamiltonian are F 2

dd and F 4
dd . In the interme-

diate state, these are supplemented by additional parameters
describing the interactions between the valence electrons and
the core-hole, F 2

d p, F 4
d p, G1

d p, and G3
d p. For an atomic model,

as applied here, the parameters F 0
dd and F 0

d p only produce
overall shifts in the eigenenergies. In general, the valence
Slater integrals can also be modified in the presence of the
core hole, but we make the approximation that F 2

dd and F 4
dd

remain the same in the initial and intermediate states. This
is reasonable because core-hole effects tend to cause only
moderate changes in these values, and because the parameters
in the intermediate state affect only the resonant profile of the
excitations and not the energies of the final states. Since the
resonant profile is already broadened by core-hole lifetime
effects, these parameters tend to have only a secondary in-
fluence on the quality of the agreement between theory and
experiment. As will be seen later, this assumption is validated
by the good level of agreement obtained between theory and
simulation.

Since the x-ray wavelength tends to be larger than the
extent of the atomic orbitals, we treat Dkε̂ and D†

k′ ε̂′ within
the dipole approximation. In the atomic limit, this means
that Dkε̂

= ∑
α,β 〈φα| ε̂ · r̂ |φβ〉 f̂ †

α f̂β , where β indexes a core
spin-orbital and α is a valence spin-orbital and |φα(β )〉 are the
corresponding atomic orbital states.

To account for the finite experimental energy resolution
and the finite lifetime of the dd excitations, the delta function
in Eq. (1) is represented by a Lorentzian with full width at
half maximum (FWHM) γ . Both γ and �n are considered as
constants independent of the state in question. Because the
absolute core-hole energy is undefined in this model, we intro-
duce an adjustable energy offset xoffset to align the theoretical
spectra with the experimental data.

To interpret the RIXS spectra and distinguish different
classes of solutions to the inverse scattering problem, it is
helpful to be able to label the different n-electron eigenvec-
tors of Ĥi. In the absence of spin-orbit coupling (SOC) and
crystal field splitting, the eigenvalues of the spin and orbital
angular momentum operators are good quantum numbers and
form useful labels. This breaks down for the more general
case. Still, the eigenvectors can be effectively annotated by
the states that transform according to a certain irreducible
representations of the octahedral group, as illustrated in Fig. 1.
When the octahedral symmetry is not exact, we use the
weights of the eigenvectors within definite symmetry sec-
tors to approximately characterize the states. Our annotation

FIG. 1. Tanabe-Sugano-style plots for d-shell electronic (ini-
tial) Hamiltonians of the form x1U F 2

coul + (1 − x1)Vcf + x2U F 4

coul − (1 −
x2)U F 2

coul with occupation numbers 2 or 8. On the left subplot, x2 = 0
and x1 is varied (x1 subplot). On the right subplot, x1 = 1 and x2 is
varied. Dotted lines correspond to spin singlets, dashed lines denote
triplets. States transforming according to different irreducible repre-
sentations of the octahedral group are shown in different colors: A1 –
blue, A2 – green, E – red, T1 – teal, T2 – purple. Ground state energies
are subtracted so that occupations 2 and 8 yield the same figure. This
plot gives an overview of the spectrum of Hi as a function of its three
most important parameters F 2, F 4, and 10Dq, with other parameters
fixed to zero.

method is described in Sec. S1 of Supplemental Material
(SM) [60].

B. Bayesian optimization via Gaussian process regression

The inverse scattering problem involves searching a
high-dimensional parameter space to identify the model
Hamiltonian that best reproduces experimental spectra. Since
solving the direct problem (i.e., computing the theoretical
RIXS spectrum from a given Hamiltonian) is potentially
computationally expensive, it is imperative to minimize the
number of function evaluations required during inference. To
address this, we employ a Bayesian optimization strategy that
builds a surrogate model of the distance function between
simulated and experimental spectra, guiding the search for
optimal parameters in a sample-efficient manner [61].

1. Distance metrics

To compare theoretical and experimental spectra, we
define a distance function χ2 operating directly on the two-
dimensional (2D) spectral images. In the following formulas,
we denote the entries of the 2D arrays containing the exper-
imental (reference) and simulated spectral intensities by Ri j

and Si j , respectively. The summation over indices i, j, k, l , etc.
spans over each row and column of the corresponding arrays.
Several pixel-wise metrics are considered. They include the
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sum normalized Lp distance

χ2
Lp

=
(∑

i j

|ri j − si j |p

) 1
p

, (4)

where

ri j = Ri j∑
kl Rkl

si j = Si j∑
kl Skl

;

the maximum normalized Lp distance

χ2
L′

p
=

⎛
⎝∑

i j

∣∣∣∣ Ri j

max R
− Si j

max S

∣∣∣∣
p
⎞
⎠

1
p

, (5)

and the numerical gradient

χ2
g =

∑
i j

∣∣∣∣∣
√(

ri j − ri, j−1

�ωin

)2

+
(

ri j − ri−1, j

�Eloss

)2

− (r ↔ s)

∣∣∣∣∣,
(6)

which emphasizes features like sharp peaks or other abrupt
changes in the spectrum. Here, �ωin and �Eloss are the energy
spacings along the ωin (≡ ωk) and Eloss axes, respectively.

2. Gaussian process regression

Our approach is based on iteratively constructing and re-
fining a probabilistic model of the distance landscape, defined
over the space of Hamiltonian parameters. The central idea is
to treat the evaluation of the RIXS spectrum as a black-box
function that is expensive to query but smooth and continuous
over physically relevant regions.

To model this function, we use Gaussian process regres-
sion (GPR), a flexible, nonparametric regression method that
defines a distribution over functions [62,63]. In our case, the
input to the GPR is a vector of Hamiltonian parameters z, such
as crystal field splitting 10Dq, Slater integrals, etc. The output
is the value of a distance function χ2, which quantifies the
discrepancy between the RIXS spectrum generated by those
parameters and the experimental spectrum. Formally, GPR
models the function χ2 : Rn → R, where n is the number of
free parameters being optimized.

A Gaussian process is fully specified by a mean function
fprior(z) and a kernel function k(z1, z2). Given a set of pre-
viously evaluated parameter points and their corresponding
distance values, a Gaussian process provides a posterior distri-
bution over functions that can be used to predict the distance
freconst(z) at unseen parameter configurations

freconst(z) = fprior(z) +
∑

i j

k(z, zi )
(
K−1

)
i j

[ f (z j ) − fprior(z j )],

(7)

along with a confidence interval

δ freconst(z) = k(z, z) −
∑

i j

k(z, zi )(K−1)i jk(z j, z), (8)

where the covariance matrix is

K =

⎛
⎜⎜⎜⎝

k(z1, z1) k(z1, z2) . . . k(z1, zn)

k(z2, z1) . . .
...

...

k(zn, z1) . . . k(zn, zn)

⎞
⎟⎟⎟⎠. (9)

Throughout this work, we use the Matérn kernel with ν = 5
2

k(z1, z2) =
(

1 +
√

5

l
d (z1, z2) + 5

3l
d (z1, z2)2

)

× exp

(
−

√
5

l
d (z1, z2)

)
, (10)

where the length-scale parameter l is optimized internally
through the regression process. The Bayesian prior fprior(z)
is set to zero in the following.

3. Acquisition function

The acquisition function is a central component in active
learning, which determines the next sampling point in the
parameter space based on the surrogate model constructed
by GPR. This function quantifies the trade-off between ex-
ploration of regions with large uncertainties and exploitation
of regions predicted to yield low distances, i.e., good de-
scriptions of the experimental spectra. In our approach, we
employ the Upper Confidence Bound (UCB) acquisition func-
tion, which balances the mean prediction of the GPR and its
associated uncertainty [64]. It is defined as

UCB(z) = freconst (z) + κ δ freconst (z), (11)

where freconst(z) is the Gaussian process’s predicted distance
at parameter configuration z, δ freconst(z) is the model’s un-
certainty estimate, and κ is a hyperparameter controlling
the exploration-exploitation balance. A larger κ encourages
exploration by favoring points with high uncertainty, while
a lower value promotes exploitation by prioritizing low
predicted distances. The UCB acquisition function enables
efficient navigation of the high-dimensional Hamiltonian pa-
rameter space by guiding the sampling toward informative
regions. This aspect is crucial for minimizing the number of
RIXS simulations during the optimization process.

III. IMPLEMENTATION OF THE INVERSE
SCATTERING PROBLEM

Figure 2 presents a flowchart of the method. We employ
a two-stage optimization strategy that combines global ex-
ploration with local refinement to efficiently minimize the
distance between simulated and experimental RIXS spectra
in a high-dimensional parameter space.

In the first stage, the experimental data is preprocessed.
In the second stage, we use GPR to construct a surrogate
model of the distance function over the Hamiltonian param-
eter space. The GPR is initialized with a small number of
randomly sampled points, and subsequent evaluations are
guided by the acquisition function Eq. (11). To improve ef-
ficiency and stability, we restrict optimization at this stage to
a subset of parameters that have the strongest influence on
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(a) (b)

(c)

(d)

FIG. 2. Flowchart of the Bayesian optimization algorithm used to solve the inverse scattering problem for RIXS. (a) The preprocessor
imports and processes a spectrum image from a RIXS experiment. (b) The GPR sampler builds a set of Nrun models of the distance function
via an active learning protocol. Each run consists of Niter GPR iterations, followed by Ninit initial evaluations at random points. (c) Parameters
obtained from the Ngreedy smallest queried distances are refined by a subsequent greedy optimizer. (d) Finally, the results are presented by the
data analyzer.

the RIXS spectra, while holding others such as energy loss
broadening γ and most spin-orbit couplings fixed. This design
choice helps reduce dimensionality and avoids uninformative
regions of parameter space. Further details can be found in
Sec. III B.

In the third stage, we apply a local, derivative-free opti-
mizer (in our case, Powell’s method via PY-BOBYQA) to refine
the best candidates found by GPR [65]. This step not only
improves the precision of previously optimized parameters
but also reintroduces variations for any parameters fixed in
the second stage, enabling a full-space optimization. This
refinement enhances convergence and consistently leads to
lower distance metrics.

Finally, in the fourth stage, the results are processed, peak
features are classified according to their symmetry, and the
results are output.

In the following sections, we provide a detailed description
of each stage of the process.

A. Preprocessing

We take the experimental spectrum in the form of a two-
dimensional array of intensities interpolated onto a regular
grid. The array indices correspond to different values of the
incident energy ωin and energy loss Eloss. The intensities
are positive, but given only up to an overall multiplicative

constant. The experimental spectrum typically exhibits many
peaks, some of which are better described by the single ion
model than others. Since we focus on dd excitations, the
first step is to crop the spectrum in the energy loss direction,
omitting the effect of the elastic peak, low-energy collective
excitations, and excitations to other high-energy orbitals (e.g.,
charge transfer excitations). Restricting the spectrum to the
relevant energy range of the model used is crucial and signifi-
cantly impacts the reliability of the results.

B. GPR sampler

Once preprocessing is complete, we provide the processed
spectrum to the GPR sampler, which constructs a model of a
distance function χ2 as a function of the model parameters, z.
Evaluating the distance function involves running the direct
scattering problem, that is using EDRIXS to compute the
RIXS spectra.

We have found that it is beneficial to use the sum-
normalized L1 distance χ2

L1
when the RIXS spectrum is not

too crowded, e.g., away from a half-filled initial valence shell.
This distance function normalizes with respect to the volume
under the spectrum, so it gives considerable weight to fainter
side peaks that the max-norm measure χ2

L′
1

is more prone to
missing. In contrast, when the initial configuration is closer
to half-filling, the parameter space consists of a plethora of
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configurations with intensities widely spread in energy space.
This structure leads to a rich and shallow landscape for the
sum norm, which makes optimization difficult. Under these
circumstances, we have found that the max norm, which
gives extra emphasis to the region around the brightest peak,
is more robust. We have also found that the gradient norm
generally underperformed the sum and max norms. The be-
haviors of each norm around the final parameter set for each
material are reported in Fig. 9 of Appendix and Sec. S2 of
SM [60].

To build the Gaussian approximation of χ2, we initially
evaluate the distance function at a small number Ninit = 10
of random points in parameter space. The Gaussian process
provides an estimate χ2 as well as its uncertainty between
the calculated points. We then feed this information to the
acquisition function [see Eq. (11)] and maximize this function
to yield the next queried point (at which χ2 is to be evaluated).
Once the value of χ2 is known at the new point, the GPR
model is updated, and the acquisition is maximized again to
obtain the next point. The process is iterated for Niter = 1000
iterations. This active learning approach is intended to aid the
solution of the global minimization of the distance function
with a minimal number of expensive spectral simulations. To
improve the results and get a sense of the robustness of the
optimization, we repeat the buildup of the Gaussian model
from different initial points for Nrun times in total. This yields
a total number Nrun × (Ninit + Niter ) evaluations of χ2 (i.e.,
calls to the EDRIXS solver).

Since the number of a priori floating parameters is rather
large, we chose a subset of parameters with respect to which
χ2 is optimized by GPR. This selection is mainly dictated
by the sensitivity of the distance function against varying the
corresponding parameter. Such dependencies can be predicted
theoretically and confirmed numerically, as detailed in Fig. 9
and Figs. S3, S5, and S8 of SM [60]. Another concern pertain-
ing to the broadening parameters is that floating them often
allows the optimization to enter uninteresting valleys of χ2

where the broadening gets very large and the distinguishing
features of the RIXS spectra are washed out. To avoid this,
we fix the value of the core-hole broadening �/2 at this stage,
as well as (with the exception of Ca3LiOsO6) all spin-orbit
couplings to their atomic values. We also set the final state
broadening γ empirically to match the typical width of the
dd excitations. GPR then focuses on fitting 10Dq, the Slater
parameters, the offset xoffset, and in the case of Ca3LiOsO6,
the initial and intermediate state valence spin-orbit couplings
with the temporary constraint ζv,i = ζv,n.

The results of different runs are combined and ranked by
distance function value before being passed to a subsequent
greedy optimizer. In doing this, one tests for the presence of
multiple local minima in the distance function and the extent
to which these have similar fit quality. This stage further
restricts the parameter space to the most interesting candi-
date regions and excludes any obviously unphysical local
minima identified by GPR. For example, one can exclude
small-distance regions where F 2

dd � F 4
dd .

Although we found that GPR itself is efficient in locating
promising regions in parameter space, we found it advanta-
geous to add a further optimization step to refine further the
parameters obtained.

C. Greedy optimizer

Since the GPR sampling balances exploration and opti-
mization in a complex parameter space, it is not necessarily
best suited for fine optimization when close to a minimum in
the distance landscape. In principle, one could fine tune the
fitting process by adjusting the hyperparameter κ controlling
the balance between exploration and exploitation. However,
we have found it more efficient to instead include a step in
which we collect the “best” Ngreedy ∼ 10–30 evaluated points
with the smallest distance function values from the candidate
parameter regions. These points are used as initial points
to start a greedy optimization of the distance function. The
greedy optimizer uses a refined version of Powell’s method,
provided by the package PY-BOBYQA [65]. At this stage, the
optimizer extends the set of fitted parameters to now include
the spin-orbit couplings and other parameters that were omit-
ted from GPR. The optimization started from a particular
initial point typically converges in a few thousand function
evaluations.

Besides improving on the parameter estimates, the greedy
optimization provides valuable information on the perfor-
mance of the GPR minimization and the robustness of the
method in general. The greedy optimizer is used to obtain
basic uncertainty intervals for the local solutions. In principle,
it might be possible to use techniques like simulation-based
inference to obtain formal distribution functions for the pa-
rameters. However, this would not be very practical given the
desire to minimize the number of RIXS simulations, and it
would not be particularly useful given that the true uncertain-
ties on the parameters have a significant contribution from the
approximations used in the atomic model for RIXS.

D. Data analyzer

The greedy-optimized set of points is grouped based on
a threshold-based connectivity clustering approach. (To illus-
trate the kinds of differences that are typically found in these
clustered solutions, Fig. 11 of Appendix plots the spectra
obtained from the best fits of three closely packed clusters
obtained for Fe2O3.) Our analysis pipeline presents the user
with a list of physically distinct solutions ordered by quality
of fit. The robustness of the method is benchmarked by asking
the question, how many of the runs provide points that are
relaxed into the peak corresponding to the accepted fit. We
use the Ngreedy best points of the GPR sampler as a proxy to
estimate the robustness of the fitting procedure.

Finally, the eigenstates of the initial Hamiltonian for the
best fit are annotated by eigenvalues of a set of approximately
conserved quantities and discrete symmetry labels. We devel-
oped our own code to perform this annotation automatically,
which is detailed in Sec. S1 in SM [60].

IV. RESULTS FOR EXPERIMENTAL SPECTRA

A. NiPS3

NiPS3 is a layered van der Waals crystal in which the active
Ni d8 ions are coordinated by six S atoms in approximately
cubic symmetry [66,67]. It has attracted significant attention
for its optoelectronic properties, including a novel magnetic
exciton [12,13] and its two-dimensional magnetism [68]. We

155167-6



HAMILTONIAN PARAMETER INFERENCE FROM … PHYSICAL REVIEW B 112, 155167 (2025)

FIG. 3. Experimental and simulated spectra for NiPS3: (a) exper-
imental data from Ref. [13], (b) hand-fitted (reference), (c) result of
GPR, and (d) result after greedy fine-tuning (Powell’s method). The
corresponding L1 sum distances for the models shown in (b)–(d) are
χ 2

L1
= 0.692, 0.694, and 0.480, respectively.

consider this material because it represents a challenging case
in which the atomic model can capture some, but not all, of
the physics of this material in light of its small charge-transfer
energy [12,13].

We use the experimental RIXS spectrum from Ref. [13].
The spectrum was measured at the SIX 2-ID beamline of
the National Synchrotron Light Source II (NSLS-II) with
an energy resolution of 31 meV FWHM. The experimental
spectrum was recorded at temperature T = 40 K, well below
the Néel ordering temperature of 140 K. The geometry in-
volved an incident x-ray angle of θin = 23◦ and a scattering
angle of 2� = 150◦. Intensities were recorded in a incident
energy range ωin ∈ [848.5 eV, 857.6 eV] around the Ni L3

edge with π -polarized incident x rays. The originally mea-
sured spectrum was subsequently truncated to the energy loss
range Eloss ∈ [0.5 eV, 2.0 eV]. It was also resampled into an
equidistant grid with 40 points in the ωin direction and 151
points in the Eloss direction.

1. GPR results

The comparison of experimental spectrum, together with
the hand-fit results of Ref. [13] (which we refer to as the
“reference” model hereafter), GPR, and greedy-updated sim-
ulated spectra are shown in Fig. 3. Fitted parameters after
the greedy refinement are reported along with their reference

TABLE I. NiPS3 parameters (in units of eV). The “interval 1.25”
and “interval 1.5” refer to the range of values for each parameter that
keep the distance function within 1.25× or 1.5× its minimum value,
respectively, with all other parameters held fixed. The abbreviation
“Pt. est.” is short for point estimate: the set of parameters correspond-
ing to the smallest achieved minimum of the distance function.

Parameter Ref. Pt. est. Interval 1.25 Interval 1.5

F 2
dd 5.26 5.50 [5.09, 6.02] [4.88, 6.53]

F 2
d p 6.18 6.70 [2.15, 10.93] [n/a,13.17]

F 4
dd 3.29 4.50 [3.66, 5.56] [3.08, 6.49]

G1
d p 2.89 2.74 [−0.43, 4.56] [−1.81, 5.86]

G3
d p 1.65 2.38 N/A N/A

10Dq 1.07 1.061 [1.02, 1.09] [1.00, 1.18]
�ωin N/A −1.02 [−1.36, −0.65] [−1.53, −0.42]
ζi 0.083 0.123 [0.101, 0.147], [0.089, 0.162]
ζn 0.102 0.0 N/A N/A
ζc 11.2 11.46 [10.78, 12.21], [10.43, 12.66]
�n 0.6 0.544 [0.273, n/a] [0.189, n/a]
γ 0.05 0.06 (fixed) (fixed)

counterparts in Table I. Reference values included in Table I
are taken from Ref. [13]. The table includes two different
uncertainty intervals for each fitted parameter. Intervals 1.25
and 1.5 correspond to the intervals within which the distance
function increases by 1.25 and 1.5, respectively, from their
minimum values (see also Fig. 9). The distance function χ2

L1

was used in the optimization.
The results obtained from the GPR and after greedy fine-

tuning are in excellent agreement with the reference spectrum,
and of compatible (if not superior) to the hand-fitted spectrum.
The classification of the excitations is also similar for both the
GPR and greedy fine-tuned solutions. The ground state is a
triplet 3A1 state with completely filled t2g subshell and two
electrons on the eg manifold. Here the upper index denotes
spin multiplicity and A1 is the symmetry label with respect to
the octahedral group. The lowest lying excitations at around
1–1.2 eV correspond to dd excitations where one electron
transfers between the t2g and eg orbitals. These excitations
typically have 3T2 symmetry, with some mixing of 1E and
3T1. The higher energy loss peaks are predominantly 3T1 with
either one or two electrons transferred to eg orbitals. These
annotations align well with previous findings in the literature
[13].

It should be noted that the feature around 1.45 eV, which
has previously been identified as a Hund’s exciton [13], is not
perfectly predicted by the model. This difference, and other
small discrepancies between the theory and experiment, arise
from the atomic approximation used here. In particular, it has
been shown that an Anderson impurity model is required to
more accurately capture these excitations due to the rather
small energetic difference between the Ni d and S p states
in this material [69].

B. NiCl2

NiCl2 is a prototypical van der Waals antiferromagnet and
a classic charge-transfer insulator. It adopts a layered rhombo-
hedral structure (space group R3̄m) comprised of edge-sharing
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TABLE II. NiCl2 parameters (in units of eV). The “interval 1.25”
and “interval 1.5” refer to the range of values for each parameter that
keep the distance function within 1.25× or 1.5× its minimum value,
respectively, with all other parameters held fixed.

Parameter Ref. Pt. est. Interval 1.25 Interval 1.5

F 2
dd 7.34 (7.8) 7.91 [7.30, 8.40] [6.76, 8.91]

F 2
d p 4.63 3.65 [n/a, 7.22] N/A

F 4
dd 4.56 (4.85) 5.21 [3.82, 7.56] [2.33, 8.90]

G1
d p 3.93 4.16 [3.04, 5.69] [2.43, 9.78]

G3
d p 2.24 2.41 [n/a, 7.31] N/A

10Dq 0.95 0.905 [0.87, 0.94], [0.86, 0.96]
�ωin Pt. est. −4.54 [−4.88, −4.12], [−5.11,−3.77]
ζi 0.083 0.0797 [n/a, 0.132] [n/a,0.16]
ζn 0.102 0.125 [n/a, 0.616] N/A
ζc 11.507 9.774 [9.08, 10.61] [8.64, 11.29],
�n 0.5 0.4125 fixed fixed

NiCl6 octahedra forming a two-dimensional triangular lattice.
Each Ni2+ (3d8) center is coordinated by six Cl− ligands in
an approximately octahedral environment.

NiCl2’s low-lying excitations include extremely sharp
spin-singlet dd multiplets ( 1A1g/

1Eg) stabilized by intra-
atomic Hund’s exchange, which are coupled to the ligand
environment and exhibit ligand-tuned energies and lifetimes.
These aspects make NiCl2 a benchmark for studying Hund’s
excitons, their interaction with lattice and magnetic degrees of
freedom, and their propagation (dispersion) in 2D correlated
insulators [14].

1. Experimental setup

We use the experimental RIXS spectrum from Ref. [14].
The spectrum was measured at the Soft Inelastic X-Ray (SIX)
2-ID beamline of the NSLS-II with an energy resolution of
31 meV FWHM. The experiment probed the Ni L3 edge.
The spectrum was recorded at temperature T = 40 K, with
grazing incidence, and the a∗ reciprocal-lattice direction lying
in the scattering plane. Accordingly, we used scattering angles
θin = 10◦, 2� = 150◦ in the simulation. The incident beam
was σ -polarized. Intensities were recorded in the incident
energy range of width 3.11 eV, including 32 grid points.
The examined energy loss range is Eloss ∈ [0.5 eV, 3.5 eV],
including 311 grid points in total.

2. GPR results

We show the experimental spectrum along with the refer-
ence, GPR, and greedy refined spectra in Fig. 4. Parameter
values of the fits are collected in Table II. The reference
values in Table II are extracted from Ref. [14]. Reference [14]
reported a clear double-peak structure at the L3 edge in the
incident energy direction, which is well reproduced by the
fits. The ground state electronic configuration was charac-
terized as 3A2g with t6

2g e2
g orbital occupation, in complete

agreement with our numerics. Reference [14] observed two
sharp excitonic peaks, which they annotated as spin-singlet
excitations with 1A1g / 1Eg symmetry labels. We observe
peaks at similar locations, although it is difficult to comment
on their relative widths due to the limitations of the single

FIG. 4. Experimental and simulated spectra for NiCl2: (a) exper-
imental data from Ref. [14], (b) hand-fitted (reference), (c) result
of GPR, (d) result after greedy fine-tuning (Powell’s method). The
corresponding L1 sum distances for (b)–(d) are χ 2

L1
= 0.496, 0.406,

and 0.373, respectively.

ion model. The candidate peaks are less pronounced than the
experimental spectrum. Our peak assignments made for our
fitted spectra approximate, but do not completely overlap the
peak annotations in Ref. [14]. The peaks at the location of the
1Eg exciton at 1.42 eV energy loss are annotated as 3T1. In
turn, the 1Eg peak in the simulation mix with two other states
with 3T1 symmetry and are positioned upwards in energy by
about 0.1 eV and 0.3 eV, respectively. The other sharp peak
of label 1A1g at 2.43 eV is present in the computed spectra as
well, albeit shifted upwards by 0.05 eV (GPR) and 0.15 eV
(greedy). The other peaks are annotated consistently with
Ref. [14], with some variance in the eg occupation numbers.

C. Fe2O3 thin films

We now consider RIXS measurements on α − Fe2O3

(hematite) thin films [56]. This material is a well-known insu-
lating antiferromagnet that hosts Fe3+ (d = 5) (S = 5/2) ions
and supports long-distance magnon transport without charge
flow – an attractive platform for low-power spintronic devices.
In the corundum structure each Fe3+ is coordinated by six O2−
ligands, forming nearly ideal FeO6 octahedra [70]. This test
case is of particular interest because atomic model fits to Fe L
data for this material currently do not exist in the literature.
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FIG. 5. Experimental and simulated spectra for Fe2O3: (a) exper-
imental data from Ref. [56], (b) result of GPR, (c) result after greedy
fine-tuning (Powell’s method). L1 max distances for (b) and (c) are
χ 2

L′
1

= 158.8 and 116.8, respectively.

1. Experimental setup

We use the experimental Fe L3 edge spectrum reported in
Ref. [56] for this test case. The measurement took place at the
SIX 2-ID beamline of the NSLS-II with an energy resolution
of 23 meV FWHM. The experimental spectrum was recorded
at T = 100 K using linearly (π ) polarized light and scattering
angles θin = 20◦, 2� = 150◦, and an azimuth angle ϕ = 0◦.
Intensities were recorded in the incident energy range of width
6.394 eV about the Fe L3 resonance, including 30 grid points.
The energy loss range is Eloss ∈ [0.5 eV, 2.2 eV] measured on
151 grid points in total.

2. GPR results

Figure 5 shows the experimental spectrum along with its
simulated counterparts. Both the GPR and greedy fine-tuned
fits reproduce many aspects of the experimental spectra. Pa-
rameter values corresponding to the greedy fit are reported in
Table III. Reference [56] attributed the two main branches of
excitations in the Eloss ∼ 1–2 eV range to dd excitations. They
correspond to 6A1g → 4T1g (at 1.4 eV) and 6A1g → 4T2g

(at 1.9 eV) transitions, flipping both spin (S = 5/2 → 3/2)
and orbital (eg → t2g), respectively. This conclusion is largely
consistent with the fit results, with the important remark that
the fitted spectrum consists of multiple overlapping peaks,
some of which feature 2T2(t2)5 content. Overall, our method

TABLE III. Fe2O3 parameters (in units of eV). The “interval
1.25” and “interval 1.5” refer to the range of values for each parame-
ter that keep the distance function within 1.25× or 1.5× its minimum
value, respectively, with all other parameters held fixed.

Parameter Pt. est. Interval 1.25 Interval 1.5

F 2
dd 5.78 [5.60, 5.99] [5.50, 6.10]

F 2
d p 0.6 [0, 1.67] [0, 2.11]

F 4
dd 3.80 [3.78, 4.03] [3.71, 4.10]

G1
d p 4.65 [3.97, 6.07] [3.75, 6.55]

G3
d p 4.20 [2.85, 5.42] [2.24, n/a]

10Dq 1.26 [1.21, 1.31] [1.18, 1.33]
�ωin −4.63 [−4.83, −4.29] [−4.97, −4.11]
ζi 0 [0,0.0533] [0,0.069]
ζn 0 N/A N/A
ζc 8.44 [7.99, 9.07] [7.79, 9.42]
�n 0.34 [0.21, 0.47] [0.16, 0.54]

successfully captures the major features of the spectrum. In
the longer term, incorporating further features into the model,
such as explicit treatment of ligand orbitals, cubic symmetry
breaking, and polaron physics, could represent possible ways
to improve the theory-experiment agreement further.

D. Ca3LiOsO6

As our final test case, we consider Os L3-edge RIXS
measurements on Ca3LiOsO6. The osmate material hosts
Os5+ (d3) ions that are surrounded by six O2− ligands in
an approximately octahedral OsO6 environment. The octahe-
dra themselves are arranged in a slightly distorted hexagonal
R3̄c lattice but remaining very close to ideal Oh symmetry.
Ca3LiOsO6 serves as a model 5d3 system in which the local
OsO6 octahedra are relatively isolated, allowing direct access
to single ion physics. Previous RIXS measurements on this
material have revealed a dramatic spin-orbit–induced splitting
of the t2g manifold [57]. As with the hematite case, no full
d-shell atomic models have been reported for this compound.

1. Experimental setup

We use the experimental spectrum reported in Ref. [57]
for this test case. The RIXS measurements were performed
at the Advanced Photon Source (APS) at Sector 27 using
the MERIX instrumentation. The experiment was performed
at the Os L3 edge using a powdered sample. The spectrum
was recorded using a temperature of T = 300 K, scattering
angles θin = 45, 2� = 90◦, and an azimuth angle of ϕ = 0◦.
Intensities were recorded in the incident energy range of width
8 eV about the Os L3 resonance, including 5 grid points. The
energy loss range is Eloss ∈ [0.5 eV, 5.0 eV], including 151
grid points in total.

2. GPR results

Figure 6 shows the experimental RIXS spectra as well as
simulated spectra. The overall structure of the data are well
reproduced by the fitted models. The corresponding greedy-
fitted parameters, along with their confidence intervals are
included in Table IV. Reference [57] reported four peaks
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FIG. 6. Experimental and simulated spectra for Ca3LiOsO6.
(a) experimental data from Ref. [57], (b) hand-fitted (reference),
(c) result of GPR, result after greedy fine-tuning (Powell’s method).
L1 sum distances for (b) and (c) are χ 2

L1
= 0.313 and 0.302,

respectively.

present at Eloss < 2 eV that resonate at ωin = 10.874 keV,
and a feature at Eloss ≈ 4.5 eV that resonates at ωin = 10.878
keV. This behavior indicates that the features below 2 eV are
intra-t2g excitations, whereas the higher energy feature is a
transition between the t2g and eg states.

TABLE IV. Ca3LiOsO6 parameters (in units of eV). The “inter-
val 1.25” and “interval 1.5” refer to the range of values for each
parameter that keep the distance function within 1.25× or 1.5× its
minimum value, respectively, with all other parameters held fixed.

Parameter Pt. est. Interval 1.25 Interval 1.5

F 2
dd 2.78 [2.17, 3.37] [1.53, 3.70]

F 2
d p 0.083 [0,11.61] [0,19.17]

F 4
dd 1.37 [0.64, 2.25] [0.01,2.62]

G1
d p 0.84 [n/a,1.92] N/A

G3
d p 0.24 N/A N/A

10Dq 4.15 [4.02, 4.29] [3.91, 4.35]
�ωin −3.34 [−4.41, −2.00] [−4.98, −1.38]
ζi 0.474 [0.393, 0.542] [0.313, 0.581]
ζn 0.551 [0.206, 0.862] N/A
ζc N/A N/A N/A
�n 3.0 (fixed)

FIG. 7. NiPS3: Decrease of the sum normalized distance function
for 60 runs of 1000 iterations.

Reference [57] fixes the value of the crystal field to
10Dq = 4.5 eV; our fitted 10Dq = 4.1 eV is somewhat lower.
We assign the dominant ground state character to an 4A2g state,
in agreement with Ref. [57], although we find a more signifi-
cant contribution of 2T2 states mixed in Ref. [57] refers to the
first two peaks as hybridized 2Eg and 2T1g states. The numerics
(including simulations we conducted using the parameters in
Ref. [57]), however, predict a more diverse hybridization of
2Eg and 2T1g, 4A2g and 2T2. The second peak is a mixture of
2T1 and 2E , in agreement with the prior work [57]. The third
peak is consistently evaluated to be an almost pure 2T2 state.
The fourth peak is predominantly 2T2, with some 2T1 and 2E
mixed in. This assignment is also shared between Ref. [57]
and our fits. Other heavy-element-based oxide materials have
shown that improved model solutions can be obtained from
co-fitting L3 and L2 spectra [71]. Such an approach would be
an interesting extension to the current analysis of Ca3LiOsO6.

V. DISCUSSION AND CONCLUSIONS

Our results demonstrate that it is possible to automate
model Hamiltonian extraction from information-dense RIXS
spectra of real materials, dramatically reducing the amount
of effort and expertise required compared to traditional hand-
tuned fitting.

A common challenge in model Hamiltonian extraction is
the nonuniqueness of the inverse problem. Our work shows
that multiple distinct parameter configurations can yield vi-
sually similar RIXS spectra. This problem is part of why
hand-fitting RIXS spectra is challenging since it is difficult for
humans to anticipate the number of different local minima of
the distance function. Our automated analysis system enables
a more comprehensive identification of these local minima.
We further outline an automated means to use symmetry la-
bels to more definitively identify distinct solutions.

This research points towards several promising directions
for future work. One important issue concerns the choice
of the distance function used to quantify similarity between
the experimental and simulated spectra. Experimental data
are often noisy, and simulated spectra can be affected by
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FIG. 8. (Top) Distribution of 73 GPR evaluations with d �
1.15χ 2

L1,min,GPR for NiPS3. (Bottom) Results of subsequent greedy
optimization starting from the 23 best GPR points. The chosen point
is denoted by a gray ×. On both plots, the lines F 4

dd = F 2
dd and

F 4
dd = 0.625 F 2

dd are drawn in blue and orange, respectively. The blue
line is used to restrict candidate solutions, while the orange is shown
as a guideline only.

systematic model errors, making this comparison nontrivial.
In this study, we employed pixel-wise metrics as a straight-
forward and transparent way to assess visual similarity. While
effective in many cases, these metrics are sensitive to local
fluctuations and may under represent high-level spectral fea-
tures. A potentially promising extension of our work would
be to incorporate learned perceptual similarity metrics, such
as those based on deep neural networks, which have shown
remarkable effectiveness in natural image comparison tasks
[72]. Whether this approach would improve the quality of
the workflow sufficient to justify the additional computational
expense is an open question.

An obvious avenue to improve the method is to apply it
to models of increasing sophistication such as Anderson im-
purity models or extended clusters. Such generalizations can

provide a better approximation to the experimental spectrum
over a wider range of energy loss at the cost of a larger number
of floating parameters and a more expensive distance function.
Further improvements to the active learning method (such
as using deep Gaussian process models or refined distance
functions) as well as numerical optimizations of the RIXS
simulation together could represent suitable approaches to
overcoming these difficulties. Simultaneously incorporating
additional information to better constrain the problem is likely
to be valuable. This could include first-principles calculations
of tight-binding parameters and effective interactions.

Our approach has a close connection to simulation-
based inference (SBI) [73–75]. In SBI one determines a
posterior distribution of model parameters, given a set of
prior beliefs and a forward simulator mapping parameters
to (synthetic) data. Various methods have been proposed
to approximate the likelihood from the simulation, includ-
ing approximate Bayesian computation [76–78], synthetic
likelihood [79], Bayesian Optimization for Likelihood-Free
Inference (BOLFI) [80], and more recent approaches like neu-
ral density estimation [81]. Our approach is close to BOLFI
in the sense that a distance function between experiment
and simulation is defined, which we model with a Gaussian
process. Along the lines of BOLFI, one could define an ap-
proximate likelihood function based on the uncertainty of
the Gaussian process. The resulting approximate likelihood
can be used to sample a posterior distribution of parameters.
This approach would be an alternative way of discussing
the confidence regions of parameters and formally would
provide uncertainty estimates for the parameters. However,
the “probability distributions” obtained this way would be
somewhat artificial, as the major cause of the difference be-
tween simulated and experimental spectra is due to systematic
omissions in the model (as opposed to, e.g., statistical noise),
and thus both the Gaussian process model for the uncer-
tainty of the distance and the defined likelihood are somewhat
ad hoc.

Another natural extension is to embed our inference loop
into Bayesian optimal experimental design [82–84], where
the algorithm selects the next measurement (most directly,
the incident energy ωin) to maximally reduce uncertainty
in the Hamiltonian parameters. In XAS, Zhang et al. [41] im-
plemented an adversarial Bayesian optimization scheme that
couples a Hamiltonian-fitting step with a sampling Bayesian
optimization step to adaptively choose photon-energy points,
achieving accurate models with tens of samples; analogous
ideas could be ported to RIXS with suitable low-latency sur-
rogates [85] and streaming objectives.

In summary, this work establishes that a Bayesian op-
timization framework can automatically infer multiorbital
Hamiltonian parameters directly from information-dense
RIXS spectra with an accuracy that rivals expert hand-fitting.
Applied to four representative quantum materials—NiPS3,
NiCl2, Fe2O3, and Ca3LiOsO6—the method not only repro-
duces published parameter sets but also supplies the first quan-
titative atomic-model parameters for Fe2O3 and Ca3LiOsO6.
By rigorously mapping uncertainties, the approach offers a
transparent route to evaluating model uniqueness and reliabil-
ity. These results pave the way for extending inverse-problem
automation to more elaborate cluster or impurity models and,
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FIG. 9. NiPS3: The behavior of various distance measures around the fine-tuned minimum. Solid red: L1 sum normalized, dashed blue: L1
maximum normalized, dashed orange: L2 sum normalized, dashed green: magnitude of gradient, maximum normalized. The distance functions
are generally sensitive to the initial Slater parameters as well as 10Dq and the energy offset xoffset, while they are less sensitive to intermediate
state parameters, especially ζn.

ultimately, to high-throughput exploration of novel quantum
materials with minimal human intervention.
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APPENDIX: DETAILED FITTING INFORMATION

1. NiPS3

a. Fitting procedure

We used the sum-normalized L1 distance χ2
L1 for this anal-

ysis. Figure 7 shows the decrease in the best probed distance
function as a function of the GPR iterations for Nrun = 60
independent runs. The variance of the best estimate after a
fixed number of iterations is significant, motivating the use of
multiple runs.

The best 73 points (with distances smaller than
1.15 χ2

L1,min,GPR) are shown in the top panel of Fig. 8, as
a function of F 2

dd , F 4
dd and 10Dq. These points form three

well-separated clusters, two of which are discarded due to
unphysical F 4

dd/F 2
dd ratios. After throwing out the unphysical

point, we are left with Ngreedy = 23 points, which are further
refined with the greedy approach. The bottom panel of Fig. 8
shows the result of the greedy optimization starting from the
best points of the GPR fit. All points collapse to the same
valley of the distance function.
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FIG. 10. (Top) Distribution of 50 GPR evaluations with d �
1.2χ 2

L1,min,GPR and 10Dq < 2.5 for Fe2O3. (Bottom) Results of sub-
sequent greedy optimization starting from the 28 best GPR points.
The overall best point is denoted by a gray X, while alternative
solutions are marked with a plus and an asterisk. On both plots, the
lines F 4

dd = F 2
dd and F 4

dd = 0.625 F 2
dd are drawn in blue and orange,

respectively. The blue line is used to restrict candidate solutions,
while the orange is shown as a guideline only.

Figure 9 depicts the dependency of the distance functions
on each floated parameter, keeping all the rest at their mini-
mum values.

2. NiCl2

a. Fitting procedure

We used the sum normalized L1 distance χ2
L1 for this anal-

ysis. Figure S1 of SM [60] shows the decrease of the best
probed distance function as function of the GPR iterations
for Nrun = 60 independent runs. The best 11 points (with dis-
tances smaller than 1.2 χmin,GPR) are shown on the top panel of
Fig. S2 (SM [60]), shown as function of F 2

dd , F 4
dd , and 10Dq.

The bottom panel of Fig. S2 (SM [60]) exhibits the result
of the greedy optimization starting from the outcomes of the

FIG. 11. Fe2O3: Alternative results for the greedy fit. L1 max
distances for (a)–(c) are χ 2

L′
1

= 116.8, 129.6, and 148.7, respectively.

The fits shown in (a)–(c) correspond to the parameter values indi-
cated by the cross (×), plus (+), and star (�) in Fig. 10.

GPR fit. Upon the greedy refinement, these points arrange into
a single cluster.

Figure S3 of SM [60] depicts the dependency of the dis-
tance functions on each one floated parameter, keeping all the
rest at their minimum values.

3. Fe2O3

a. Fitting procedure

We used the maximum normalized L1 distance χ2
L′

1
for this

analysis. The top panel of Fig. S4 (see SM [60]) shows the
decrease of the best probed distance function as function of
the GPR iterations for Nrun = 60 independent runs.

The best 50 points (with distances smaller than
1.2 χ2

L′
1,min,GPR and 10Dq < 2.5) are shown on the top

panel of Fig. 10. A subset of the candidate points have an
unphysical F 2

dd/F 4
dd ratio. We thus restrict our analysis to 28

points with F 2
dd � F 4

dd in the following. The bottom panel of
Fig. S4 (SM [60]) depicts these remaining candidate points
after the restriction.

The bottom panel of Fig. 10 exhibits the result of the
greedy optimization starting from the outcomes of the GPR
fit. Three separate but closely packed clusters can be dis-
tinguished on this plot. Figure 11 shows alternative fits
corresponding to different minima of the greedy optimization.

Figure S5 in SM [60] plots the dependency of the distance
functions on each one floated parameter, keeping all the rest
at their minimum values.
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4. Ca3LiOsO6

a. Fitting procedure

We used the sum normalized L1 distance χ2
L1 for this anal-

ysis. Figure S6 in SM [60] shows the decrease of the best
probed distance function as function of the GPR iterations
for Nrun = 60 independent runs. The best 24 points (with
distances smaller than 1.06 χ2

L1,min,GPR are shown on the left

panel of Fig. S7 (see SM [60]), shown as function of F 2
dd , F 4

dd
and 10Dq.

The right panel of Fig. S7 (SM [60]) exhibits the result
of the greedy optimization starting from the outcomes of the
GPR fit. The refined points organize into a single cluster.

Figure S8 (SM [60]) depicts the dependency of the distance
functions on each one floated parameter, keeping all the rest
at their minimum values.
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