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A fundamental difference between antiferromagnets and fer-
romagnets is the lack of linear coupling to a uniform magnetic 
field due to the staggered order parameter1. Such coupling is 
possible via the Dzyaloshinskii–Moriya (DM) interaction2,3, 
but at the expense of reduced antiferromagnetic (AFM) sus-
ceptibility due to the canting-induced spin anisotropy4. We 
solve this long-standing problem with a top-down approach 
that utilizes spin–orbit coupling in the presence of a hidden 
SU(2) symmetry. We demonstrate giant AFM responses to 
sub-tesla external fields by exploiting the extremely strong 
two-dimensional critical fluctuations preserved under a 
symmetry-invariant exchange anisotropy, which is built into 
a square lattice artificially synthesized as a superlattice of 
SrIrO3 and SrTiO3. The observed field-induced logarithmic 
increase of the ordering temperature enables highly effi-
cient control of the AFM order. Our results demonstrate that 
symmetry can be exploited in spin–orbit-coupled magnets to 
develop functional AFM materials for fast and secured spin-
tronic devices5–9.

Low-dimensional antiferromagnets, exemplified by high-Tc 
cuprates, are known for extremely rich emergent behaviours, such as 
unconventional superconductivity, exotic magnetism, magnon con-
densates, quantum phase transitions and criticality10–12. According 
to the Mermin–Wagner theorem13, strong critical fluctuations of an 
isotropic two-dimensional (2D) antiferromagnet prohibit long-range 
magnetic ordering at finite temperatures, and lead to large magnetic 
fluctuations and an exponentially diverging magnetic correlation 
length ξ ∝ πρ ∕e T2 s  (where ρs is the stiffness) as temperature →T 014. 
Although it is well known that a magnetic field can suppress the fluc-
tuations and increase the Néel temperature in quasi-2D materials, the 
induced Zeeman energy must be comparable to the AFM interaction 
to significantly enhance the ordering stability15. As a result, the field 
required for a sizable or observable effect is often very large, and even 
unpractical. The underlying limitation originates from the fact that 
the AFM order is a locked pair of opposite interpenetrating ferromag-
netic sublattices16 (Fig. 1a), and the direct linear coupling between the 
staggered moment Ms and an external field is symmetrically forbid-
den. In fact, Ms only responds linearly to a staggered field hs through 
χAF =​ dMs/dhs, where χAF is the AFM staggered susceptibility.

Despite the lack of direct coupling of the external field to the 
collinear AFM order parameter (OP), an indirect linear coupling 
is enabled in the presence of spin canting, which is caused by the 
antisymmetric anisotropic exchange—the well-known DM interac-
tion2,3 (Fig. 1b). The canting creates a small net moment and allows 
the external field to linearly drive the AFM order as an effective 
staggered field. The DM interaction is, however, also accompanied 
by a symmetric anisotropic exchange interaction2. Both interactions 
necessarily induce local spin anisotropy17 (Fig. 1b). This route thus 
presents a dilemma in that the enforced magnetic axis confines the 
originally isotropic AFM spins (Fig. 1a) and reduces the value of χAF.

Although enabling a strong linear coupling and preserving the 
2D χAF seem fundamentally incompatible, we show here that a solu-
tion is possible if the spin isotropy is protected by the global sym-
metry of the system under all local anisotropic exchanges (Fig. 1c).  
Such a symmetry-invariant exchange anisotropy was first pro-
posed more than two decades ago in the context of superexchange 
pathways in spin-half AFM square lattices in the absence of direct 
exchange17, but, to the best of our knowledge, has not been experi-
mentally realized or utilized. The proposed concept was demon-
strated by an effective Hamiltonian including an AFM Heisenberg 
interaction J, a DM interaction Dij, and a symmetric anisotropic 
exchange δ as

∑ ∑δ= ⋅ + ⋅ × + −H J S S h SS S D S S[ ] , (1)
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where i j,  runs over all neighbouring pairs. The last term of equa-
tion (1) represents the Zeeman energy in a uniform magnetic field 
B along the x-axis with h =​ gaaμBB, where gaa ≈​ −​2 is the g-factor and 
μB is the Bohr magneton. While the DM and symmetric anisotropic 
terms usually induce spin anisotropy and suppress the large χAF of a 
pure Heisenberg model, it was shown that the continuous SU(2) spin 
symmetry will be preserved if the DM vectors satisfy the so-called 
‘unfrustrated condition’17 ∑ =D 0C ij , where C denotes any closed 
loop in the 2D lattice plane. This condition is fulfilled, for instance, 
when the DM vectors Dij are all perpendicular to the basal plane 
and alternate their signs (Fig. 1d). As a result, δ = + ∣ ∣ −J JDij
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and equation (1) acquires a hidden SU(2) symmetry which can 
be unveiled by a staggered z-axis rotation of the local spin refer-
ence frame by the canting angle φ ( φ = ∕ = ∣ ∣D J D Dtan(2 ) , with ij )17 
(Fig. 1d). In the new frame, equation (1) recovers an isotropic 2D 
Heisenberg model with a large χAF (Methods)

∑ ∑ ∑φ φ= ⋅ − + ⋅∼ ∼ ∼ ∼∼H J h S h SS S cos sin e (2)
i j
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i
i
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Here = +∼J J D2 2 , and Q=​(π​, π​) is the AFM ordering wave-
vector. Fundamentally, this condition is achieved here because the 
global structural point group symmetry of the square lattice is pre-
served by the in-plane octahedral rotations that create the aniso-
tropic exchange. It is noteworthy that the hidden SU(2) symmetry 
holds not only in the effective spin model, but also the high-energy 
single-band Hubbard model including the charge degrees of free-
dom17. The SU(2)-invariant exchange anisotropy is remarkable in 
that the large χAF is not only preserved but also manifests under h 
≪​ J due to the linear coupling with the AFM OP = ∑ ⋅ ∼�M e Sst i

i
i
yQ ri  

unveiled in equation (2). A key to this mechanism is a large DM 
interaction, since the linear coupling scales with the canting angle φ.

To exploit the response of the hidden SU(2) symmetry to the 
external field, we employ the epitaxial superlattices of (SrIrO3)1/

(SrTiO3)2 grown along the pseudocubic [001]-direction on SrTiO3 
substrates18 (Fig. 1e). The design utilizes the magnetic degrees of 
freedom arising from Kramers doublets of the Ir4+ 5d5 ions19–22. 
As found in a variety of iridate compounds10,20,23, these doublets 
result from the splitting of the active t2g levels caused by a large 
spin–orbit coupling ~0.4 eV and can be represented with effective 
S =​ 1/2 pseudospins (Supplementary Information 3). In this situa-
tion, even a weak Coulomb repulsion is sufficient to generate a 2D 
AFM Mott insulating state, such as that in Sr2IrO4 (ref. 23). On the 
other hand, unlike ordinary S =​ 1/2 spins present in lighter transi-
tion metal oxides, the effective S =​ 1/2 pseudospins have far stronger 
spin–orbit coupling, which leads to the much larger DM interac-
tions and spin canting commonly found in magnetic iridates19,24,25. 
Indeed, the ground state of the confined IrO6 octahedral layer in 
our superlattice is revealed as a 2D antiferromagnet with a Néel 
transition at TN~29 K and significant canted moments (Fig. 1f,g), 
which is essential for the hidden SU(2) symmetry. The reason for 
using a bilayer SrTiO3 spacer here is twofold. Firstly, to realize the 
unfrustrated condition, we performed density functional theory 
calculations and found only the in-plane octahedral rotation exists, 
whereas out-of-plane rotation would occur when the spacer is thin-
ner (Supplementary Information 1). We confirm this D4-symmetric 
structure by synchrotron X-ray diffraction (Supplementary 
Information 2), fulfilling the unfrustrated condition. Such an 
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Fig. 1 | Design and realization of spin canting without spin anisotropy via a SU(2)-invariant DM interaction. a–c, Schematic diagrams of a pair of 
antiferromagnetically coupled spins. The pair is fully antiparallel and free to rotate together in all directions (a). Under a typical DM interaction (b), the 
pair is canted towards a preferential orientation, which is stable against magnetic fields. If the DM interaction preserves the rotational symmetry (c), the 
pair is again highly susceptible to magnetic fields via the canting. d, A square lattice where DM interactions caused by planar octahedral rotation (blue 
arrows) preserves SU(2) symmetry. The spins SS can be mapped on a local spin frame 

∼
SS according to the shown transformation. Red arrows denote the 

summation loop of DM vectors. e, Layered structure of the superlattice. f, Reciprocal space L-scan across the (0.5 0.5 5.5) magnetic reflection at the Ir  
L3-edge and 6 K. g, Temperature dependence of the AFM Bragg peak intensity at zero field reveals TN~29 K, defined as the maximum slope of the AFM OP.  
A similar onset behaviour is seen in the in-plane remnant magnetization, which is plotted squared since scattering is proportional to the OP squared30.  
The out-of-plane component was also shown for comparison. The error bars indicate the statistical error.
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octahedral rotation pattern is also consistent with the observed in-
plane canted moment, similar to Sr2IrO4 with a canting angle φ~10°  
(refs 19,26), and the absence of out-of-plane net magnetization (Fig. 1g).  
Other layered perovskites such as La2CuO4 tend to have out-of-
plane octahedral rotations17. Furthermore, increasing the interlayer 
spacing reduces the interlayer exchange J⊥. This is crucial because J⊥ 
stabilizes TN at the cost of reducing χAF (ref. 27) and it must be orders 
of magnitude smaller than h in order to exploit the symmetry-
invariant exchange anisotropy of a quasi-2D system. Indeed, when 
decreasing the SrTiO3 spacer from a bi-layer to a single-layer, TN is 
increased from ~29 K (Fig. 1g) to ~140 K (refs 18,28), consistent with 
a strong increase of J⊥.

Having verified the realization of the hidden SU(2) symmetry, 
we explored the responses of the AFM order and transition to an in-
plane magnetic field. Figure 2a shows the temperature dependences 
of the AFM Bragg peak intensity under various magnetic fields. 

The value of χAF, which is defined at the zero-field limit, is extracted 
from low-field data (Methods) and clearly shows a divergent behav-
iour in Fig. 2b around TN. Moreover, compared to cuprates29, it 
shows an enhancement of about two orders of magnitude, manifest-
ing giant 2D AFM fluctuations. As the field further increases from 
0 to 0.5 T, one can see from Fig. 2a that the thermal stability of the 
AFM order is rapidly enhanced. For instance, while the AFM Bragg 
peak onsets at ~40 K at zero field, it is readily observable below 70 K 
at just 0.5 T. Since the zero-field Néel transition becomes a cross-
over under an external field due to the linear coupling, the cross-
over temperature, T0, is defined similarly to TN as the temperature 
that maximizes the slope of the OP extracted from the peak inten-
sity30. Figure 2c shows the drastic enhancement of T0, especially at 
small fields near 0.1 T, displaying a logarithmic behaviour (Fig. 3a). 
The enhancement of T0 at 0.5 T is ~50%, which is remarkable con-
sidering that the Zeeman energy at this maximum applied field is 
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Fig. 2 | Magnetic diffraction in applied magnetic fields. a, Temperature dependence of the (0.5 0.5 5.5) AFM Bragg peak under various in-plane magnetic 
fields. The coloured surface mesh highlights the dramatic increase of the temperature boundary below which the magnetic peak becomes observable.  
b, Temperature-dependent χAF extracted from a. The magnitude was calibrated by assuming a constant spin canting angle φ ~ 8°. The error bar represents 
the standard deviation from the average value during the data-binding process. Lines are drawn to guide the eye. c, Relation between crossover 
temperature T0 and magnetic field B. The colour scale highlights the crossover region. d, The magnetic peak intensity in response to an on/off 0.2 T  
field-switching sequence at 50 K. The error bars represent the statistical error.
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still three orders of magnitude smaller than J~50 meV (refs 20,31,32)  
(Fig. 3a). The extreme sensitivity of T0 enables complete on/off 
switching of the AFM order with small magnetic fields. Figure 
2d shows the in-situ observation of the AFM Bragg peak at 50 K. 
Zero counts are observed when the field is off because there is no 
AFM order at this temperature. In contrast, a clear magnetic peak 
intensity is detected when the field is on, indicating activation of 
the AFM long-range order. The switching is highly reliable, as evi-
denced from the reproducible and prompt response of the peak 
intensity even after turning the magnetic field on and off multiple 
times. Although this measurement does not resolve the switching 
dynamics, due to the lack of ultrafast time resolution, it will be an 
interesting direction for future investigation because the strong 
exchange interaction is expected to afford a rapid response7,9 which 
can now be triggered by a small external field under the symmetry-
invariant exchange anisotropy.

The rapid increase of T0(B) can be quantitatively accounted for 
by equation (2) with addition of the small higher-order exchange 
anisotropies, Γ= − ∑′ ∼ ∼H S S ,i j i

z
j
z

1 ,  induced by the small Hund’s coupling 
of the Ir4+ ion19,20. This term is responsible for easy-plane anisotropy 
and is ~10−4J (Methods). Although the Hamiltonian (H +​ H′​) lowers 
the SU(2) symmetry towards U(1), the resulting planar continuous 
symmetry still leads to an exponentially divergent antiferromag-
netic correlation length in the vicinity of a Berezinskii–Kosterlitz–
Thouless (BKT) transition33: ξ ~ ∕eb t , where = −t T T

T
BKT

BKT
 and b is a 

Γ1-dependent constant. This essential singularity of the transition 
point renders the AFM order highly susceptible to the external field. 
We then treat h and J⊥ as perturbations to (H +​ H′​). These pertur-
bations are negligible in the T ≫​ T0 regime dominated by in-plane 
vortex–antivortex excitations. The crossover to the regime charac-
terized by a large AFM OP occurs at the temperature scale T0, where 
the combined cost from h and J⊥ for separating an in-plane vor-
tex–antivortex pair by a distance ξ is comparable to the intralayer 
exchange energy33: φ ξ ξ∣ ∣ + ∣ ∣ ~⊥

͠
J S S h J S(2 sin ) ln2 2 2 . The result-

ing crossover temperature is
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where c is a constant accounting for the effects of quantum fluc-
tuations and disorder. At zero field, the finite J⊥ turns the BKT 
transition into a Néel transition—that is, TN =​ T0(h =​ 0). The rapid 
increase of T0 arises from the logarithmic dependence on the mag-
netic field, which linearly couples to the AFM order. The prerequi-
site is that the effective staggered field φ∣ ∣hsin  must be larger than 
J⊥. To fit the observed T0(B) with equation (3), we estimated the 
constant b from the crossover temperature calculated with classi-
cal Monte Carlo simulations (Methods). Figure 3a shows that the 
experimental data is well explained by equation (3). The estimated 

~⊥
−J 10 3meV is two orders smaller than the Zeeman energy at 0.5 T.

In the absence of the DM interaction, the linear field–OP cou-
pling in equation (3) would have to be replaced by the much weaker 
quadratic coupling that gives an energy contribution two orders of 
magnitude smaller than the interlayer interaction for a 0.5 T field—
that is, to a negligibly small field-induced increase of T0 (Methods). 
We confirmed this picture by applying a 0.5 T out-of-plane field 
(B//z) that has no coupling to the in-plane spin canting. The mea-
sured temperature dependence of the magnetic Bragg peak indeed 
shows no observable change of T0 compared with TN (Fig. 3b). As 
a comparison, similarly small effects have been seen in Cu2+-based 
quasi-2D materials with a canted moment that is two orders smaller 
than iridates, and a significant increase of T0/TN therein demands a 
much larger field to match the AFM exchange15.

Our study shows that a SU(2)-invariant DM interaction can 
enable an unprecedented control of AFM order by a small mag-
netic field. This mechanism drives a logarithmic increase of the 
ordering temperature of a 2D antiferromagnet by exploiting the 
large 2D critical fluctuations under a hidden continuous symmetry. 
Engaging with the hidden SU(2) symmetry may lead to dramatic 
effects, pointing to rich spin–orbit physics of iridates beyond the 
high-Tc analogy. Since symmetry-invariant exchange anisotropy is 
not restricted to square lattices, the demonstration of this concept 
is expected to facilitate development of new antiferroic systems and 
devices with improved efficiency.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0152-6.
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Fig. 3 | Theoretical analysis and experimental confirmation. a, Comparison between the measured field-dependence of the crossover temperature T0 
and the logarithmic increase [equation (3)] expected for a quasi-2D version of equation (1). J is set as 50 meV (refs 20,31,32) to normalize h (Methods). b, 
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conditions. The error bars represent the statistical error.
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Methods
First-principles density functional calculations. Density functional theory 
(DFT) calculations were performed using projector-augmented wave method with 
the generalized gradient approximation (GGA)34 as implemented in the Vienna 
ab-initio Simulation Package35. The plane wave cutoff was chosen as 500 eV on the 
basis of the convergence tests. To model the epitaxial relationship of samples grown 
on a SrTiO3 substrate, the in-plane lattice parameters were fixed to the substrate 
value, 3.905 Å. A 4 ×​ 4 ×​ 3 Monkhorst–Pack k-point mesh was used for reciprocal 
space integrations. Correlation effects were treated by including a Hubbard 
correction with U =​ 2.2 (5.0) eV and J =​ 0.2 (0.64) eV for Ir (Ti)36.

Sample growth. The superlattice was deposited on a (001)-oriented SrTiO3 single-
crystal substrate using pulsed laser deposition, with a KrF (248 nm) excimer laser. 
Before deposition, the substrate was pretreated to have a TiO2 termination. The 
substrate temperature and oxygen pressure were optimized as 700 °C and 0.1 mbar, 
respectively. Equipped with a reflection high-energy electron diffraction unit, the 
growth process was in-situ monitored to control the stacking sequence with atomic 
precision. The details of the growth and sample characterization can be found 
elsewhere18.

Experimental investigation of octahedral rotation pattern. Here, we use 
Glazer’s notation for describing octahedral rotation patterns. Following Glazer’s 
arguments, the unit cell of a perovskite material can be enlarged by octahedral 
rotations, octahedral distortions and cation displacement37,38. To distinguish 
different rotation patterns, Glazer used superscript +​ (−​) to denote an in-phase 
(out-of-phase) rotation of adjacent octahedra along a high-symmetry axis of the 
pseudocubic cell, and 0 to represent the absence of octahedral rotation. Meanwhile, 
different rotation amplitudes along various axes are indicated by different letters37. 
For instance, Glazer notation a−a−c0 represents a distorted lattice structure with 
out-of-phase octahedral rotations of the same amplitude along the a and b axes 
but no octahedral rotation along the c axis (Supplementary Fig. 1a). Similarly, 
a0a0c− denotes the presence of only an out-of-phase octahedral rotation along the 
c-axis (Supplementary Fig. 1b). From the side views, one can see that the two types 
of octahedral rotation patterns lead to very different movements of the planar 
and apical oxygen ions. Specifically speaking, the planar oxygen ions move away 
from the ab plane and the apical oxygen ions move away from the c axis under 
a−a−c0, buckling the vertical bond. In contrast, the planar oxygen ions stay within 
the ab plane and the vertical bond remains straight under a0a0c−. The two types of 
motions may superimpose to create a pattern of a–a–c−.

The enlargement of the crystal lattice due to octahedral rotations can be 
followed by the emergence of half-order Bragg peaks in an X-ray diffraction 
(XRD) pattern, and the peak intensities are proportional to the octahedral rotation 
amplitude squared37,39. Therefore, from the intensity of specific superlattice 
peaks, one can identify the lattice distortion due to octahedral rotation. The 
correspondence of superlattice peaks and octahedral rotation has been thoroughly 
discussed in refs 37,39. To access the weak superstructure due to octahedral rotation, 
we studied the lattice structure with the synchrotron X-ray source at the 33BM 
beamline at the Advanced Photon Source of Argonne National Laboratory. A unit 
cell of a ×​ a ×​ 3c (a and c are the pseudocubic in-plane and out-of-plane lattice 
parameters, respectively) was used to define the reciprocal space notation.

Magnetization measurements. Temperature-dependent in-plane and out-of-plane 
remnant magnetizations were measured with a quantum-design superconducting 
quantum interference device (SQUID) magnetometer.

X-ray absorption (XAS) and magnetic circular dichroism (XMCD) measurements. 
To check the robustness of the Jeff =​ 1/2 model in the present superlattice, we 
performed XAS and XMCD measurements around the Ir L3- and L2-edges at 
beamline 4ID-D of the Advanced Photon Source, Argonne National Laboratory.

Magnetic scattering study. Resonant magnetic X-ray scattering measurements 
were performed around the Ir L3-edge at 6IDB beamline at the Advanced Photon 
Source of Argonne National Laboratory. During the scattering process, a linearly 
polarized X-ray beam was scattered by both charge and magnetic moments. While 
the former arises due to non-resonant Thomson scattering, the magnetic scattering 
intensity can be amplified by choosing an X-ray energy which resonates with the 
active orbital through atomic transitions. In addition, a charge scattered X-ray has 
the same polarization as the incident X-ray (σ-σ channel), while the polarization 
will be rotated 90° by magnetic scattering (σ-π channel). To separate the magnetic 
contribution from the charge contribution, a polarization analyser was utilized. 
This method enables the direct detection of the antiferromagnetic order in a thin 
epitaxial superlattice less than 50 nm thick, which would be impossible by other 
techniques. The present magnetic scattering experiment is also able to directly 
probe the staggered moment Ms by measuring the AFM Bragg peak intensity. 
Because the staggered susceptibility is defined as χAF =​ dMs/dhs (hs is the staggered 
field) at the zero-field limit (hs →​ 0), we extracted the temperature dependence of 
χAF at the low-field limit by the relative change of the AFM Bragg peak intensity 
from zero field to 80 Oe, the smallest field in the current experiment—that is, 
χAF ∝​ 

φ
−

×
I I[ (80 Oe) (0 Oe) ]

sin 80 Oe
. To convert the intensity variation to the change of Ms 

and estimate the absolute value of χAF, the data were further normalized with the 
remnant magnetization (Fig. 1g) by assuming a constant spin canting angle φ of 8°.

Frame transformation and proof of the hidden SU(2) symmetry. Performing the 
second-order perturbation calculation to the one-band Hubbard model with the 
spin-orbit coupling (λ​), we obtain an effective spin Hamiltonian

∑ δ= ⋅ + ⋅ × +H J S SS S D S S[ ] , (4)
i j

i j ij i j i
z

j
z

,

where Si represents the spin operator at the ith site, Dij is the DM vector 
perpendicular to the plane whose absolute value is λ= ∣ ∣ ∝D D ,ij  and 
δ λ= + − ∝J D J2 2 2 is the symmetric exchange anisotropy17, and the sum runs over 
all bonds of the square lattice. To unveil the hidden SU(2) symmetry, we change 
the local reference frame in each of the two sublattices. The new reference frame in 
sublattice A (B) is obtained by rotating the original reference fame by an  
angle φ (−​φ) around the z axis (Fig. 1d). The spin operators in the new reference  
frame become

φ φ= −∼S S Scos sin
x x y

A A A

φ φ= +∼S S Ssin cos
y x y

A A A

for any site in sublattice A and

φ φ= +∼S S Scos sin
x x y

B B B

φ φ= − +∼S S Ssin cos
y x y

B B B

for any site on sublattice B. The z components remain unchanged. Given that

φ φ φ⋅ = ⋅ + ^ ⋅ × + −∼ ∼ S SS S S S z S Scos(2 ) sin(2 ) [1 cos(2 )] z z
A B A B A B A B

we can rewrite equation (4) as

∑= ⋅∼∼ ∼H J S S
i j

i j
,

with φ= + = ∕∼J J D D Jand tan(2 )2 2 , if the DM vectors satisfy the condition 
∑ =D 0,C ij , where C denotes any closed directed path consisting of bonds of the 
square lattice17. This condition arises from the fact that the bonds alternate between 
A →​ B and B →​ A when we circulate around a closed loop and = −D DAB BA. The 
isotropic interaction in the new reference frame reveals that the system has a 
hidden SU(2) symmetry. The DM vectors of a 2D corner-sharing IrO6 octahedral 
network with only in-plane octahedral rotation clearly satisfy this condition, as 
shown in Fig. 1d.

In addition to the superlattices, such a 2D layer also exists in bulk Sr2IrO4, 
where the condition of the hidden SU(2) symmetry should be satisfied as well19,26. 
However, this material also possesses a relatively large interlayer coupling40,41, 
which is fixed by the bulk structure and can not be tuned, masking the 2D critical 
fluctuations. Furthermore, due to the interlayer coupling, the in-plane canting 
moments of the different layers within the unit cell adopt a ‘ +​ −​ −​ +​ ’ sign pattern 
along the c-axis in the magnetic ground state and cancel each other at zero field23. 
A magnetic field larger than 0.2 T is necessary to polarize them. These issues 
are, however, absent in the superlattice structure, where the canted moments of 
different layers always maintain a parallel alignment and the interlayer coupling 
can be tuned and suppressed18.

Monte Carlo simulation and fitting parameters. As derived in the main text, the 
crossover temperature is given by

= +

φ∣ ∣ + ∣ ∣⊥























∼
T T

b T4

ln
(5)cJ S

J S S h

0 BKT

2
BKT

2 sin

2
2

2

To estimate the parameter b, we performed the classical Monte Carlo 
simulation with up to 6,144 ×​ 6,144 spins for the model

∑ ∑

∑

Γ Γ φ

φ

= ⋅ − ± − −

+ ⋅

∼∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

∼

H J S S S S S S h S
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z
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i
i
yQ r

,
1 2

i

where +​ (−​) is taken for bonds along the x(y)-axis, and Q =​ (π​, π​) is the 
antiferromagnetic ordering wavevector, and Γ1 and Γ2 terms are high-order 
corrections introduced by the Hund’s coupling19. In the superlattice, the in-plane 
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rotation angle of octahedra is estimated28 to be approximately 8°, which is slightly 
smaller than that of bulk Sr2IrO4. Accordingly, we set tan 2φ =​ D/J =​ 0.27. For other 
parameters, we set Γ1 =​ 10−4J, corresponding to an out-of-plane gap Δ~1 meV 
(refs 42,43), and Γ2 =​ 5Γ1 (ref. 19). Because the Γ2 term does not affect the energy of 
the canted-spin ground state in the classical spin limit, it is not expected to affect 
T0. We confirmed that the dependence of the crossover temperature on Γ2 is of 
order Γ ∕∼J2  and negligible, therefore the Γ2 term was omitted in the discussion of 
the main text. The magnetic field was set down to h =​ 2 ×​ 10−5J, corresponding to 
a magnetic field ~0.01 T as applied in our experiments. The crossover temperature 
was calculated in the same way with the experimental results as the inflection point 
of the antiferromagnetic order parameter as a function of temperature, ∣ ∣�Mst

2 , 
where = ∑ ⋅ ∼�M Sei

i
i
yQ r

st
i .

Above the Berezinskii–Kosterlitz–Thouless transition temperature (TBKT), 
the correlation length diverges as ξ ~ e

b
t  (ref. 44) where = −t 1T

TBKT
. In the SU(2) 

symmetric case, it diverges in the vicinity of zero temperature as ξ ~
πρ

e T
2 s

 (ref. 14), 
where ρs is the spin stiffness. These two expressions should be smoothly connected 
in the isotropic limit →T( 0)BKT , which implies → ∞b . Therefore, the closer to 
the SU(2) symmetry the interaction is, the faster the divergence of the correlation 
length becomes. These expressions for the correlation length are valid for both the 
quantum and the classical spins. Because the quantum nature is expected to be 
irrelevant with regard to ordering, the difference in the scaling of the correlation 
length between the quantum and the classical spins is only the renormalization 
of the energy—namely, the transition temperature or the spin stiffness. We thus 
expect the parameter b to be independent of the length of spins.

Fitting the numerically obtained data to equation (5), we estimated ≈T 210 KBKT
cl  

and b ≈​ 3.1. We used ≈∼J 500 K, which is a common energy scale for magnetic 
iridates, especially layered systems32. Then we fitted the experimental data, 
fixing the value of b, and estimated ≈T 18 KBKT

q  and ≈ .⊥J 0 007 K. In terms of 
the parameter c, which is proportional to the effective energy of vortices, namely 
the spin stiffness ρ∝c( )s , we obtained ~c 1cl  for the classical spins and ~ −c 10q 1 
for the experimental data. Because ρ ∝ Ts BKT at the Berezinskii–Kosterlitz–
Thouless transition45, our estimations are consistent: ∕ ≈ ∕ ~ −c c T T 10q cl

BKT
q

BKT
cl 1

. The reduction of the transition temperature can be explained by the quantum 
fluctuations and possible disorder in the real material.

Theoretical calculations on non-SU(2)-invariant exchange interaction models. 
To further check the crucial role of the SU(2)-invariant exchange, we have 
calculated the field-induced effect for different values of the exchange anisotropy. 
Specifically, we considered three different models. The first model is the one 
discussed in the manuscript, where the exchange anisotropy Γ1 =​ 10−4J is included 
to take into account the smaller higher-order correction from Hund’s coupling in 
the real material under consideration. The model remains quasi-SU(2)-invariant 
and is highly consistent with the experimental observation (Fig. 3a). The second 
model corresponds to a hypothetical situation where the symmetric anisotropic 
exchange is artificially removed (δ =​ 0 in Eq. (1)), and the only source of anisotropy 
is the DM interaction. In this case, the exchange anisotropy is no longer SU(2)-
invariant but has a relatively strong U(1) symmetry since the DM interaction alone 
favours an easy-plane anisotropy. In the third model, the easy-plane anisotropy is 
further increased to the XY-limit by setting Γ = ∼J1 .

For the second and third models, the constant b was estimated to be ~ 1.8 
and ~ 1.4, respectively, from classical Monte Carlo calculations, consistent with 
a previous work46. By keeping the other parameters the same as those in the 
quasi-SU(2) model, we extracted the relative enhancement of T0 as a function of 
the in-plane magnetic field in the two situations. As shown in Supplementary Fig. 
6, both the second and the third models show a much weaker relative increase 
of T0 in response to an external magnetic field as compared with the quasi-
SU(2)-invariant case, and are not able to account for the observed effect. This 
is understandable because the constant b must increase upon approaching the 
SU(2)-invariant point in order to describe the crossover from the temperature 
dependence of the magnetic correlation length of a 2D U(1) magnet, ξ ~ ∕eb t , 
where = −t T T

T
BKT

BKT
, to the behaviour characteristic of a SU(2) magnet: ξ ∝ πρ ∕e T2 s .

Data Availability. The data that support the plots within this paper and  
other findings of this study are available from the corresponding author upon 
reasonable request.
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