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Here we provide an additional diagram depicting the
scattering geometry, a more detailed description of the
fitting of the RIXS spectra and further details of our pa-
rameterization of the Bi2Sr2CaCu2O8+δ electronic struc-
ture according to the Yang-Rice-Zhang ansatz (YRZ) [1].
Then we go on to describe how this provides a basis for
calculating the magnetic response.

EXPERIMENTAL GEOMETRY

Figure 1 shows further details of the scattering geom-
etry used in the experiment. In addition to the param-
eters defined in the main text, here we define the total
momentum transfer Q, which is resolved into Q∣∣, parallel
to a∗, and Q

⊥
, parallel to c∗, δ is the angle between Q

and Q
⊥
. In this diagram π-incident x-rays have polar-

ization in the plane of the diagram perpendicular to ki
and σ-incident x-rays have polarization perpendicular to
the plane of the diagram. The ADRESS beamline used
for these measurements employs an APPLE-II type he-
lical undulator which produces highly (∼ 99%) polarized
x-rays.

FITTING THE RIXS SPECTRA

As described in several studies of the cuprates (see for
example Refs. [2–6]) several different types of scattering
processes are present in Cu L3 edge RIXS spectra. These
include elastic processes from specular and diffuse scat-
tering, phonons below ∼ 90 meV, single spin-flip scat-
tering, multi spin-flip scattering, charge scattering and
orbital scattering. All the peaks used in the fitting here
and in previous work [4] were convolved with a Gaussian
function, which is an excellent approximation to the res-
olution function of the SAXES instrument used in this
study. By definition, the elastic scattering is a δ-function
at 0 eV energy transfer, which leads to a Gaussian when
convolved with the resolution function. The electronic
and orbital scattering causes a tail of scattering in the
low energy region, which can be modeled by a smooth
function, and in this case we used a third order poly-
nomial. In YBCO (Ref. 4) the RIXS spectrum could
be fit with a resolution-limited Gaussian to account for
the elastic line, an anti-symmetrized Lorentzian to ac-
count for the phonon, single spin-flip paramagnon and
multi spin-flip scattering and a smooth background. In
Bi-2212 we find that the low energy inelastic scatter-
ing cannot be adequately accounted for with an anti-
symmetrized Lorentzian as the high energy tail of the
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FIG. 1. (Color online) The scattering geometry in the ac-
plane showing the definitions of the different angles and vec-
tors used in the experiment. ki and kf are the initial and
final scattering vectors of the x-rays. 2θ = 130○ is the angle
between ki and kf . θi is the angle between the sample surface
and ki. a

∗ and c∗ are the reciprocal lattice vectors. Q is the
total momentum transfer, which is resolved into Q∥, parallel
to a∗, and Q⊥, parallel to c∗.

paramagnon extends out too far in energy. Similarly,
a measurement of La1.92Sr0.08CuO4 also could not ac-
count for the low energy inelastic scattering in terms of
a single anti-symmetrized Lorentzian [3]. Given that the
phonon, single spin-flip and multi spin-flip scattering in
Bi-2212 could not be unambiguously separated, we used
an anti-symmetrized Lorentzian plus two Gaussians to
provide a smooth line, which accounts for the MIR re-
gion of the RIXS spectrum. In essence, however, this
is a phenomenological method to provide a smooth line
within the confidence limits set by twice the errorbars.
The paramagnon energy is taken to be the peak of this
smooth line. The error is estimated by adding the un-
certainty in the fit procedure to the uncertainty in de-
termining the zero energy transfer energy via scattering
from carbon tape.
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YRZ PARAMETERIZATION OF THE
ELECTRONIC STRUCTURE OF Bi-2212

In the YRZ model the coherent single particle excita-
tions are described by a Green’s function for spinons

G(ω,k) = 1

ω − ξ(k) −ΣR(ω,k)
, (1)

where ξ(k) is a hopping dispersion (including terms up
to next-next-nearest neighbor) renormalized by doping

ξ(k) = ξ0(k) + ξ′(k), (2a)

ξ0(k) = −2t(x)(coskx + cosky), (2b)

ξ′(k) = −4t′(x) coskx cosky

− 2t′′(x)(cos 2kx + cos 2ky) − µp, (2c)

and

ΣR(ω,k) = ∣∆R(k)∣2/[ω + ξ0(k)], (3)

is a self energy term that depends on the pseudogap

∆R(k) =∆0(x)(coskx − cosky). (4)

The doping dependence is included via Gutzwiller factors
[7],

gt =
2x

1 + x, (5a)

gs =
4

(1 + x)2 , (5b)

which renormalize the bare hopping and exchange pa-
rameters t0, t′0, t′′0 and J :

t(x) = gtt0 +
3

8
gsJχ, (5c)

t′(x) = gtt′0, (5d)

t′′(x) = gtt′′0 , (5e)

with χ = 0.338 [8]. The bare parameters arise from an
underlying t − J Hamiltonian description

Ht−J = Ps( −∑
ijs

t0,ijc
†
iscjs + J ∑

⟨ij⟩

Si ⋅ Sj)Ps, (6)

where Ps is a projection operator onto the singly occupied
subspace. Note that the exchange J enters the dispersion
as a hopping-like term due to a mean field factorization
of the spin interaction [1].

The precise form of the pseudogap in the cuprates is
still an issue of debate, especially the question of whether
the pseudogap closes at optimal doping or in the over-
doped regime where superconductivity disappears [9, 10].
The original formulation of YRZ assumed the former [1]
but ARPES measurements tend to side with the latter
scenario [10] and indeed this is the finding of ARPES
measurements on Bi-2212 samples made in the same way

TABLE I. The bare parameters.

t0 t′0 t′′0 J χ ∆0

3J/2.5 −0.3t0 0.2t0 0.12 eV 0.338 0.3t0

as the sample we study here [11]. Given that our aim
is to reconcile ARPES measurements of the electronic
structure of Bi-2212 with our RIXS measurements of the
magnetic excitations, we follow the convention of Ref.
[11]. Namely we choose a simple linearly decreasing phe-
nomenological form for the pseudogap

∆0(x) =∆0(1 − x/xcrit), (7)

which disappears at xcrit = 0.20, the overdoped edge of
the superconducting dome [12]. The overall magnitude,
∆0, is chosen by fitting to the measured electronic struc-
ture [11] as explained later. We note that our results are
not highly sensitive to the precise value of xcrit.

ARPES, when corrected for matrix element effects and
divided by the Fermi occupation factor, measures the
spectral function A(k, ω), which is directly related to the
Green’s function as A(k, ω) = −(1/π)ImG(k, ω). This re-
lationship was used in [11] to determine the parameters
for the YRZ model applied to Bi2Sr2CaCu2O8+δ. Table I
shows this bare parameter set [12]. As emphasized in the
text, we use the doping values obtained in the fitting of
the ARPES data: For the underdoped sample x = 0.03
and at optimal doping x = 0.16. The chemical potential,
µp is set according to Luttinger’s sum rule [1] self con-
sistently and found to be -0.036 and -0.054 for x = 0.03
and 0.16 respectively. We plot the resulting YRZ forms
for the electronic structure of Bi-2212 in Fig. 2.

Unfortunately, the YRZ ansatz in its original form is a
single particle Green’s function and does not constitute
a starting point for calculating the magnetic response.
However, a slave boson treatment of the t − J model, in
which fermionic ‘spinons’ are bound to bosonic ‘holons’
reproduces the YRZ propagator [13]. This provides a
connection to standard many body theoretical techniques
[14, 15]: one can calculate S(Q, ω) via a resummation of
particle-hole bubble diagrams [14].

The YRZ ansatz factors into two effective bands and
can be extended to include superconductivity by treat-
ing the system as a two band superconductor [16]. We
write the superconducting gap in the i band as ∆s,i(k) =
∆s,i(x)[cos(kx)−cos(ky)]. Because the upper, (+), YRZ
band is far above the Fermi energy we set ∆s,+ = 0 and
take ∆s,− = 0.07t0(1 − 91(x − xcrit)2) in the supercon-
ducting state [11, 12]. In the heavily underdoped, non-
superconducting case ∆s,+ = ∆s,− = 0. The propagator
is then written as a Nambu-Gor’kov (matrix) Green’s
function (with momentum labels suppressed and Pauli
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FIG. 2. (Color online) The YRZ form for the electronic structure of Bi-2212, which produces two effective bands with the
Fermi energy lying in the lower band. The resulting Fermi surface consists of hole pockets, with an area proportional to doping.
The intensity of color is proportional to the coherent quasi-particle weight. The lower, blue band has strong quasi-particle
weight on the side near (0,0) and weak quasi-particle weight on the far side towards (0.5,0.5). The gray surface represents the
Fermi energy, which forms the Fermi surface outlined in yellow. The gap between the upper and lower bands closes along the
Brillouin zone diagonal (0,0) → (0.5,0.5) at the top of the pocket. A key feature of the YRZ model is that the quasiparticle
weight vanishes at the back of the pockets. The left hand plot shows the bands for the underdoped, x = 0.03 case and the right
hand plot shows the optimally, x = 0.16, doped case.

matrices τ )

Gs(ω,k) =∑
i=±

zi
ωτ 0 + ωi(k)τ z −∆s,i(k)τx

ω2 − ω2
i (k) −∆2

s,i(k)
, (8)

with

ω± =
ξ′(k)

2
±
√
ξ̄(k)2 +∆2

R(k),

z±(k) =
1

2
± ξ̄(k)

2
√
ξ̄(k)2 +∆2

R(k)
, (9)

and we have defined ξ̄(k) = [ξ(k) + ξ0(k)]/2.
The lowest order contribution to the magnetic response

at T = 0 is

Πs(ω,Q) =∫
dk

(2π)2 ∑ij=±
zi(k)zj(k +Q)

8
(1

−ωi(k)ωj(k +Q) +∆s,i(k)∆s,j(k +Q)
Es,i(k)Es,j(k +Q) )

× [ 1

ω −Es,j(k +Q) −Es,i(k)

− 1

ω +Es,j(k +Q) +Es,i(k)
], (10)

where

Es,i(k) =
√
ω2
i (k) +∆2

s,i(k). (11)

On setting ∆s = 0 one recovers the T = 0 normal state
particle-hole bubble diagram, composed of YRZ propa-
gators. We evaluate Πs(ω,Q) numerically by summing
over a grid of 1000 × 1000 points in k space.

The dynamical structure factor is given by the RPA
resummation

S(Q, ω) = − 1

π
lim
η→0

Im
Πs(ω + iη,Q)

1 − J̃(Q)Πs(ω + iη,Q)
, (12)

with an antiferromagnetic exchange J̃(Q) = 2J̃(cosQx +
cosQy). Here we write J̃ to indicate that the bare ex-
change J that appears in Eq. 6 should be renormalized
by higher order terms (such as interactions between holes
and spin excitations that disrupt antiferromagnetic cor-
relations) [14]. The neglect of these higher order terms
is a limitation of our approach. In fact in Ref. [14] the
necessary renormalization factor was found to be quite
large, ∼ 1/3, in order to produce the transition to antifer-
romagnetic order at a low doping. Treating J̃ as a fitting
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parameter for the ∼ 40 meV resonance measured at op-
timal doping (x = 0.16) we find J̃ = 135 meV, compared
to J = 120 meV. Further discussion of these issues can
be found in Ref. [13]. For the energies and wave vectors
relevant to the RIXS data presented in this work the re-
summation is negligible. It does however have some effect
at low energies near (0,0), causing a small broadening
in energy. Inserting the numerically evaluated bubble,
Eq. 10, into Eq. 12 we arrive at the theoretical results for
the magnetic response shown in Fig 3. of the letter.
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