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Sample synthesis and characterization

All SLs were prepared on (001)-oriented SrTiO3 single crystal substrates by using a pulsed laser 

deposition system equipped with a reflection high-energy electron diffraction unit. All the 

substrates were pre-treated to have a uniform TiO2 termination. During growth, the substrate 

temperature was fixed at 700 C with pure oxygen pressure of 0.1 mbar. The laser fluency and 

frequency were optimized as 2 J/cm2 and 10 Hz, respectively. A ceramic SrIrO3 target and a single-

crystal SrTiO3 target were ablated alternately to realize the [(SrIrO3)1/(SrTiO3)2] stacking 

sequence. The required pulse number of each SrIrO3 layer was calculated using the corresponding 

growth rate of the pristine SL. The substitution was controlled by reducing the SrIrO3 pulse number 

by  followed by a subsequent deposition of SrTiO3 until the entire layer is fully covered. The 

thicknesses of all the SLs were kept the same at 30 supercells. The structural properties of the SLs 

were first characterized by using a Panalytical X’Pert MRD diffractometer. Room-temperature 

synchrotron-based XRD measurements were performed on the 33BM beamline at Argonne 

National Laboratory with incident x-ray energy of 16 keV. The magnetic x-ray scattering 

measurements were performed on the 6IDB beamline at Argonne National Laboratory with 

incident x-ray energy around the Ir L3-edge. A polarization analyzer was utilized to improve the 

signal-to-noise ratio of the magnetic peaks. 

1) c-axis lattice parameter measurement

To determine the c-axis lattice parameter of the SLs, we measured (0 0 18) Bragg peaks of 

each SL at the 33BM beamline at Argonne National Laboratory. The peak position systematically 

increases with , confirming the shrinking c-axis lattice due to Ir4+ ions being substituted by the 
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smaller Ti4+ ions. The determined c-axis lattice parameters and extracted  values from the 

expected lattice volume variation are listed in Table. S1.  

FIG. S1. Room-temperature L-scan across the (0 0 18) SL Bragg reflection measured along the 

substrate normal direction. Note that the reciprocal lattice here was defined as the a  a  3a 

superstructure cell, where a is the lattice parameter of the SrTiO3 substrate.

Table. S1. c-axis lattice parameters and extracted  values of the SLs.

Nominal  c-axis lattice parameter (Å) Extracted 

0 11.8263±0.00005 0

15% 11.8085±0.0003 16.00.5%

35% 11.7915±0.0001 31.30.2%

50% 11.7718±0.0004 49.00.6%

60% 11.7582±0.0004 61.20.7%



3

2) Epitaxial strain characterization

We have conducted reciprocal space mapping measurements on all the SLs. As shown in 

Fig. S2, for each SL, the in-plane lattice parameter is the same as that of the substrate. This 

demonstrates that all the SLs were coherently grown on the SrTiO3 substrate and therefore have 

the same in-plane lattice parameter. 

FIG. S2. Reciprocal space mapping measurements around the SrTiO3 (103) Bragg reflection of 

SLs with  = 0 (a), 15% (b), 35% (c), 50% (d) and 60% (e). 

3) Unveiling the “unfrustrated” structure of the diluted superlattice

In the pristine SL, the giant AFM response roots in the U(1) symmetry of the Jeff = 1/2 

pseudo-spins, which guarantees the exponential increase of AFM susceptibility while approaching 

the magnetic critical temperature, in combination with the effective staggered field effect 1. The 

key of this effect is to preserve the spin continuous symmetry by fulfilling the so-called 

“unfrustrated” condition of the DM interactions 2, which requires the IrO6 octahedra only rotate 

around the c-axis in a staggered manner within the square lattice. This distortion is dubbed as 

octahedral rotation, which can be characterized by measuring corresponding superstructure peaks, 
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like (0.5 1.5 3.5) in the pseudo-cubic notation 3, 4. This symmetry could be broken by rotating the 

octahedron around the [110] axis, which is called octahedral tilting and can be checked by 

measuring superstructure peaks like (0.5 0.5 4.5) 4. As shown in Fig. S3, clear superstructure peaks 

that indicates a pronounced octahedral rotation can be observed on each SL. As a comparison, we 

did not observe any octahedral tilting peaks within the experimental sensitivity. We thus 

demonstrate that all SLs meet the “unfrustrated” condition. With the crystal symmetry invariant 

against magnetic dilution, the diluted SLs retain the easy-plane anisotropy because of Hund’s 

coupling 5. 

FIG. S3. Synchrotron-based XRD patterns across the octahedral rotation peak (0.5 1.5 3.5) on the 

SL with  = 0 (a), 15% (b), 35% (c), 50% (d) and 60% (e). The bottom panels list the octahedral 

tilting peak (0.5 0.5 4.5) for the corresponding SL. 

4) Electrical transport properties measurements

The anisotropic Heisenberg Hamiltonian of the pseudospin-half moments assumes a Mott 

insulating ground state, which is often referred as the Jeff = 1/2 spin-orbital Mott insulator6. To 
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verify this state in our SLs, we measured DC resistivity on each SL using the standard four-point 

method. As shown in Fig. S4, the resistivity increases exponentially with decreasing temperature, 

unraveling a well-defined insulating ground state of each SL. 

FIG. S4. DC resistivity as a function of temperature for the SLs. The resistivity of the SL with  

= 60% is out of the measurement limit below certain temperature.

Theoretical analysis and numerical methods 

5) General analysis on length scales introduced by perturbations to the 2D system

As a representative case, let us consider the transition temperature of the quasi-2D Heisenberg 

model. Obtained from the random phase approximation 7, 8, the transition temperature introduced 

by an inter-plane coupling  is given by the following scaling relation:  where 𝐽 ⊥ 𝐽 ⊥ 𝜒2𝐷 (𝑇𝑐)~1, 𝜒2𝐷 

is the susceptibility of the 2D Heisenberg model. This relation was confirmed by previous quantum 

Monte Carlo studies 9, 10. Using the relation between the susceptibility and the correlation length  𝜉
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in the 2D isotropic 11 (and also easy-plane anisotropic) case,  where  is the in-plane 𝐽𝜒2𝐷 ~𝜉2, 𝐽

energy scale, we obtain  Thus, the inter-plane coupling introduces a length scale 𝐽 ⊥ 𝜉2(𝑇𝑐)~𝐽. 𝜆inter

 The same argument can be applied to the (staggered) magnetic field perturbation. As a ~ 𝐽
𝐽 ⊥

.

result, with h being the field strength, the external field introduces a length scale  Thus, 𝜆ext~
𝐽

ℎ.

when the correlation length reaches these length scales, the perturbation effects take place, 

introducing the transition or crossover temperatures.

6) Quantum Monte Carlo simulation and fitting parameters

The main interaction of the spin system is the intraplane isotropic Heisenberg interaction: 𝐻0 =

, where  is the pseudospin-half operator at site  in a rotating reference frame 1, 5, ∑
〈𝑖,𝑗〉𝐽𝑖𝑗𝜖𝑖𝜖𝑗𝐒𝑖 ∙ 𝐒𝑗 𝐒𝑖 𝑖

 takes 1 (0) with probability  ( ) independently for each site, and  runs over all the 𝜖𝑖 1 ― 𝛿 𝛿 〈𝑖,𝑗〉

nearest and the next nearest neighboring pairs of each plane. The exchange couplings are  𝐽 ≈ 600

K and , respectively.  where  1. Here, the hidden SU(2) symmetry 𝐽2 ≈ ― 𝐽/4 𝐽 = 𝐽2 + 𝐷2 𝐷
𝐽 = 0.27

is restored by the staggered rotation by  around z axis perpendicular to the plane 5, 12, 13. 𝜑 ≈ 10°

We need to take into account three kinds of perturbation to the main interaction. First, the small 

easy-plane anisotropy is introduced by the mixing of the Jeff = 3/2 orbitals 5, which is represented 

by  with . Considering the anisotropy only of the nearest 𝐻ani = ― 𝐽𝛤1∑
〈𝑖,𝑗〉𝜖𝑖𝜖𝑗𝑆𝑧

𝑖 𝑆𝑧
𝑗 𝛤1 ≈ 10 ―4

neighbor interaction suffices to capture the essence of physics. Secondly, a tiny interplane coupling 

remains in the SL 1. The interplane exchange coupling is estimated to be  K 1. Thirdly, |𝐽 ⊥ | ≈ 0.006

we control the AFM order by applying an in-plane magnetic field: 𝐻ext = ―ℎcos 𝜑∑
𝑖𝜖𝑖𝑆𝑥

𝑖 +ℎsin 𝜑
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, where  with the g-factor  and the Bohr magneton , the ∑
𝑖𝜖𝑖𝑒𝑖𝐐 ⋅ 𝒓𝑖𝑆𝑦

𝑖 ℎ = 𝑔𝑎𝑎𝜇B𝐵 𝑔𝑎𝑎 ≈ ―2 𝜇B

ordering vector , and  is the coordinate of site . Because of the staggered rotation of 𝑸 = (𝜋,𝜋,𝜋) 𝒓𝑖 𝑖

the reference frame, the magnetic field couples linearly to the AFM order parameter 1.

We performed quantum Monte Carlo simulations for the 2D system described by  up to 𝐻0 + 𝐻ani

 spins, using the parallel loop algorithm 14, 15. We obtained  and the parameter b 220(≅106) 𝑇BKT

for each  from the scaling of the transition temperature  16, where 𝛿 𝑇BKT(𝐿) = 𝑇BKT(∞)(1 +
𝑏2

4(ln𝐿)2)
L is the system length, and  is such that the Nelson-Kosterlitz relation 𝑇BKT(𝐿)

 is satisfied. In the Monte Carlo simulation, we used periodic boundaries 𝜌𝑠(𝑇BKT(𝐿)) =
2
𝜋𝑇

BKT
(𝐿)

and calculated the stiffness , where  is the winding number of the worldline in 𝜌𝑠(𝑇) = 𝑇[〈𝑊2〉] 𝑊

 direction,  denotes the thermal average, and  denotes the random average. For each 𝑥 (or 𝑦) 〈 ⋅ 〉 [ ⋅ ]

, L, and T, the stiffness was averaged over more than 200 independent realizations of randomly 𝛿

diluted spins.

We estimate  for , respectively, and  
𝑇BKT

𝐽 ≈ 0.213, 0.122, and 0.0339 𝛿 = 0, 15%, and 35% 𝑏 ≈ 3.4

commonly. Fig. S5 clearly shows the data for  follow the asymptotic scaling 𝛿 = 0, 15%, and 35%

with the same value of b. For , the system is ordered and the stiffness becomes 𝐿 < ani = 1/ 𝛤1

finite at the temperature such that the correlation length reaches the system size. The Nelson-

Kosterlitz relation is satisfied around this crossover temperature, which decreases with the system 

size, as in the isotropic system. For , the vortex starts forming when . This 𝐿 ≥ ani 𝜉 ≈ ani

crossover temperature to the easy-plane ordered state does not depend much on L in the 

intermediate system-size window , as shown in Fig. S5. For larger system sizes 4ani > 𝐿 > ani

, the vortex pair forms a bonding state, and the  asymptotic scaling appears. The 𝐿 ≥ 4ani 𝑇BKT
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observation of the same value of  is consistent with the vortex-bonding picture, in which the spin 𝑏

dilution is irrelevant to the critical theory of the pure 2D system. Fig. S5 also shows that the 

crossover length scale  does not depend much on , which is key to the length-scale switching. ani 𝛿

For we calculated the stiffness at  without the anisotropy term  and found 𝛿 = 50%, 𝑇 = 0 𝐻ani 𝜌𝑠

, which evidences that the case of  is not in the vortex-(𝛿 = 50%) ≈ 0.02𝜌𝑠(𝛿 = 0) 𝛿 = 50%

bonding regime but in the isotropic regime, as discussed in the main text. Using Eq. 2 from main 

text with  obtained from the Monte Carlo simulation, we fit the theoretical curve to the 𝑏 ≈ 3.4

experimental data for simultaneously. We estimate K and 𝛿 = 0, 15% and 35% |𝐽 ⊥ | ≈ 0.006 

, which are consistent with the previous estimates 1. 𝑐 ≈ 0.2

It is noteworthy that it remains highly challenging to compute the crossover temperature of the  

= 50% SL directly even with the-state-of-art method, due to the required heavy computation 

process and the infamous negative sign problem in the quantum Monte Carlo simulation 17. 

Nevertheless, the exponential divergence of the correlation length  in the renormalized 𝜉~𝑒
2𝜋𝜌𝑠

𝑇

classical regime is well established for the 2D isotropic Heisenberg model. This asymptotic form 

was confirmed by previous quantum Monte Carlo calculations with high precisions, such as the 

work in Ref. 18. The scaling form of the crossover temperature (Eq. 3) deduced from the 

exponential divergence, was also confirmed by another quantum Monte Carlo calculation for 

magnetic anisotropy 19. The same scaling form is naturally expected to be valid for other 

perturbations, such as (staggered) magnetic fields. Therefore, Eq. 3 with the optimal fitting 

parameters should produce the correct crossover temperature from the theoretical side. For 

, we use Eq. 3 and estimate  K , which are reasonable.𝛿 = 50% 𝑎 ≈ 0.1 and 𝑑~10 ―6 ≪ ℎ
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7) Scaling of the BKT transition

FIG. S5. Scaling of the BKT transition temperature that satisfies the Nelson-Kosterlitz relation 

 obtained from quantum Monte Carlo simulations. The data for 0, 15, and 𝜌𝑠(𝑇BKT(𝐿)) =
2
𝜋𝑇

BKT
(𝐿)

35% dilution show the asymptotic scaling with the same value of b and the crossover to the easy-

plane state around the same length scale, . 𝐿 = ani = 1/ 𝛤1

8) U(1) model in the vicinity of the percolation threshold

To check whether or how the deviation of  from nominal values would affect our main 𝛿

conclusion (especially for the =50% case), we calculated the crossover temperature for larger 𝛿

dilution fractions as a function of the external field. We here use the Nelson-Kosterlitz formula 

and a relation of the stiffness  for the easy-plane spin system. 𝜌𝑠(𝑇BKT) =
2
𝜋𝑇

BKT
 𝜌𝑠(0) ∝ 𝜌𝑠(𝑇BKT)
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We then assume , where the ratio depends on the easy-plane anisotropy but 
𝑇BKT

𝜌𝑠(0) ≈ const.

not on the dilution fraction for %. We indeed confirmed the constant ratio for =0, 𝛿 < 𝛿𝑝 ≈ 59.3 𝛿

15, 35, and 50% of the present 2D system. We also assume the scaling of the stiffness in the 

vicinity of the percolation threshold: , where  is the conductivity 𝜌𝑠(0) ∝ (𝛿𝑝 ― 𝛿)𝑡 𝑡 ≃ 1.310

exponent of the percolation transition. This scaling relation is obtained from the analogy to the 

random resistor network 20 and was tested for the isotropic SU(2) spin system 21. This scaling form 

should hold even with a small easy-plane anisotropy and the next nearest neighbor interaction. We 

thus obtain the scaling of the BKT transition temperature  for  close to . Using 𝑇BKT ∝ (𝛿𝑝 ― 𝛿)𝑡 𝛿 𝛿𝑝

the worldline quantum Monte Carlo method for the 2D system described by , we 𝐻0 + 𝐻ani

calculated  for =50% and obtained the prefactor of the scaling. Using this scaling 
𝑇BKT

𝐽 ≈ 0.00467 𝛿

relation and Eq. (2), we calculated the crossover temperature curve for =55%, 56%, and 57%. 𝛿
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FIG. S6. Comparison between experimental data (red circles) and theoretical curves of the U(1) 

(solid line) and the SU(2) (dashed line) models for the =50% sample. Theoretical calculations of 

the U(1) model were performed also for =55%, 56% and 57%.

As shown in Fig. S6, the magnetic response is enhanced with increasing  as expected. 

However, it is evident that the curve shape is substantially different from the experimental result: 

the curvature sign depends on the field strength, again pointing to the failure of the U(1) model in 

capturing the rapid increase of the crossover temperature. To produce the observed response at 0.5 

T,  must be as large as 56% in the U(1) model. Not only does this required value deviate too much 

from the extracted and the nominal values of , but also the responses at smaller fields are way too 

small compared with the experimental observation. This inconsistency with the experiment is 

fundamental to the U(1) model, indicating its limitation.

9) Alternative analysis using the characteristic temperature of the inflection point

To demonstrate the observed large magnetic response is intrinsic and does not depend on 

the definition of , we also extracted the characteristic temperature of the inflection point for each 𝑇0

SL under different magnetic fields. Note that, since the inflection point could not be reached for 

 due to the temperature limitation of the cryostat, we estimated its TN as ~70% of the 𝛿 = 50%

onset temperature according to the temperature dependence of other samples. As shown in Fig. 

S7, the systematic increase of magnetic response with  and magnetic field well resembles the 𝛿

behavior of those defined with the onset temperature. More importantly, it is clear that the 

experimental data of the  sample is better described by the SU(2) model. We found that 𝛿 = 50%

switching the definition of  only resulted in a modification of the scaling prefactors,  in Eq.(2) 𝑇0 𝑐
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and  in Eq.(3), as expected. Given that  is estimated for , we also replaced  with 𝑎 𝑇N 𝛿 = 50% 𝑇N

the onset temperature in the normalization to obtain a lower bound of . Interestingly, (𝑇0 ― 𝑇N)/𝑇N

even the lower bound is significantly larger than samples with smaller , further demonstrating the 

supremacy of the SU(2) model in explaining the experimental observation on the  sample.𝛿 = 50%

FIG. S7.  versus magnetic field (solid symbols). TN and T0 are characteristic (𝑇0 ― 𝑇N)/𝑇N

temperatures of the inflection points at zero field and finite fields, respectively. Open triangles 

denote the lower bound of the  SL. Solid curves are theoretical analysis for 𝛿 = 50% 𝛿 = 0 (black)

 using Eq.(2). For , simulation using Eq.(3) , 15% (blue), 35% (green) and 50% (red) 𝛿 = 50%

is also shown (dashed).
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