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Supplementary Text 

Electronic resistance measurement results  

Since the Verwey transition is sensitive to the stoichiometry of the magnetite crystal, we 

chose two single crystals, i.e., Sample 1 and Sample 2, to perform the electron diffraction 

experiment. The resistance measurement result for these two single crystals is shown below, which 

demonstrate the high quality of the single crystals. According to the phase transition temperature 

measured from Fig. S1, we estimated the stoichiometries of these two crystals based on the 

measurement results in(16): Sample 1 Fe3(1+0.0005)O4  and Sample 2 Fe3(1-0.001)O4. 

Electron diffraction patterns as a function of temperature 

To examine the Verwey transition in the Sample 1 (commercial) and Sample 2 (lab grown), 

we cooled down the samples from room temperature (300 K) to 90 K, then started to warm up and 

the electron diffraction patterns were captured at different temperatures in the TEM, the results are 

shown in Figs. S2 and S3. When the sample is transformed from spinel cubic phase to monoclinic 

phase, the forbidden reflections in the high-temperature cubic phase appear at low temperature due 

to the symmetry breaking as shown in Fig. S2b. Most of the forbidden peaks disappear above Tv, 

e.g., shown in Fig. S2c, but a few reflections, e.g., {200} reflections enlarged in inserts, with low 

q values are remained up to high temperature, like at 423 K in Fig. S2f. Sample 2 shows the same 

feature and the in situ cooling TEM results are in Fig. S3. 

Multiple scattering effect to the {200} reflections 

To verify the formation of {200} reflections in the <001> direction are not induced by 

multiple scattering effect, we performed the dynamic electron diffraction simulation including an 

appropriate sample thickness and multiple scattering effect. The sample thickness is 60 nm used 

in the simulation, which will be further discussed in the next section. The dynamic diffraction 

simulation method is based on the Bloch wave method (61). According to the published standard 

crystal structure of cubic phase (22), the simulated result is shown in Fig. S4. The {200} reflections 

are still forbidden, indicating that the {200} reflections cannot arise from multiple scattering effect 

in the <001> orientated diffraction pattern. 

Structure factors of {200} reflections in charge ordering models 

The forbidden peaks observed in the experimental pattern indicate that a symmetry breaking 

exists in the cubic phase. To figure out the origin of the {200} reflection, we first consider the 

charge ordering case. The structure factor (F) for each reflection (hkl) in the diffraction is: 

𝐹(ℎ𝑘𝑙) =  ∑ 𝑓𝑗

𝑁

𝑗=1

∙ exp [2𝜋𝑖(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)] 



 

 

 

 

Where fj is the atom form factor, xj, yj, zj are the atomic coordinates in the unit cell, 

respectively. The Wyckoff position for each element in Fe3O4 in the cubic phase is shown in Table 

S1. 

 

We presume that the {200} peaks are related to the Fe ions on 16d symmetry sites and there 

are only two types of valence state on Fe ions, i.e., Fe(2.5+δ1)+ and Fe(2.5+δ2)+. Additionally, 

considering the absence of other “forbidden” peaks shown in the monoclinic phase, we should 

preserve the face centered translational symmetry in the charge ordering model. Based on these 

conditions, we separate Fe ions on the octahedral sites into 4 subgroups with respect to valence 

state on Fe ions. Namely, the atom form factor of Fe ions in each subgroup would be fi, i =1, 2, 3, 

4. 

According to the f.c.c symmetry in 𝐹𝑑3̅𝑚 space group, the equivalent atom positions of the 

octahedral Fe ions shown in Table S2. 

 

F200 = f1·exp[2πi·2·1/2] + f1·exp[2πi·2·1/2] + f1·exp[2πi·2·0] + f1·exp[2πi·2·0] + … 

           f2·exp[2πi·2·1/4] + f2·exp[2πi·2·1/4] + f2·exp[2πi·2·3/4] + f2·exp[2πi·2·3/4] + … 

           f3·exp[2πi·2·3/4] + f3·exp[2πi·2·3/4] + f3·exp[2πi·2·1/4] + f3·exp[2πi·2·1/4] + … 

           f4·exp[2πi·2·0] + f4·exp[2πi·2·0] + f4·exp[2πi·2·1/2] + f4·exp[2πi·2·1/2] + … 

       = 4 f1 – 4 f2 – 4 f3 + 4 f4 = 4(f1 - f2 - f3 + f4) 

 

F020 = f1·exp[2πi·2·1/2] + f1·exp[2πi·2·0] + f1·exp[2πi·2·1/2] + f1·exp[2πi·2·0] + … 

           f2·exp[2πi·2·3/4] + f2·exp[2πi·2·1/4] + f2·exp[2πi·2·3/4] + f2·exp[2πi·2·1/4] + … 

           f3·exp[2πi·2·0] + f3·exp[2πi·2·1/2] + f3·exp[2πi·2·0] + f3·exp[2πi·2·1/2] + … 

           f4·exp[2πi·2·1/4] + f4·exp[2πi·2·3/4] + f4·exp[2πi·2·1/4] + f4·exp[2πi·2·3/4] + … 

       = 4 f1 – 4 f2 + 4 f3 – 4 f4 = 4(f1 - f2 + f3 - f4) 

 

The presence of the (±200) reflections indicate f1 + f4 ≠ f2 + f3 and the presence of the (0±20) 

reflections indicate f1 + f3 ≠ f2 + f4. To meet these conditions, one of the atom form factors should 

be different with the other three atom form factors, that is, the valence charge in one subgroup is 

different with other subgroups. For example, in subgroup 1 Fe(2.5+δ1)+ is Fe2+, and subgroups 2, 3, 

4, the Fe(2.5+δ2)+ 
= Fe2.76+ in order to keep the system neutral. Based on this charge ordering model, 

the originally forbidden {200} reflections can be observable due to the rotational symmetry 

breaking. There are 4 subgroups on the octahedral sites, each subgroup can be chosen to be 

different with the other three subgroups, therefore there are four twin variants in total. In each twin 

variant only one three-fold rotational symmetry along <111> direction is preserved, and the other 

three rotational symmetries are broken as shown in Fig. S5. 

The dynamic electron diffraction simulation result is shown in Fig. S6. The intensity ratios of 

the reflections (I200:I240:I600) in the experiment and simulation is summarized in Fig. 1g. The 

sample thickness for the simulation is determined to be 60 nm. The values of valence states on Fe 

ions are 2.54 and 2.486 for the simulation. 



 

 

 

 

Structure factors of {200} reflections in atomic displacements models 

With regards to atomic displacements model, the 16d Fe ions are separated in the same way 

as in the charge ordering model. That is, 16d site symmetry is broken, the face centered 

translational symmetry is preserved. 

In the atomic displacements model shown in Table S3, we assume that there is no charge 

ordering on the Fe ions firstly. The atom form factor is f. Therefore, the structure factor of (200) 

reflection can be written: 

 

F200 = f·exp[2πi·2·(1/2+δ1)] + f·exp[2πi·2·(1/2+δ1)] + f·exp[2πi·2·δ1] + f·exp[2πi·2·δ1] + … 

           f·exp[2πi·2·(1/4+δ2)]+f·exp[2πi·2·(1/4+δ2)]+ f·exp[2πi·2·(3/4+δ2)] + f·exp[2πi·2·(3/4+δ2)] 

+ … 

          f·exp[2πi·2·(3/4+δ2)]+f·exp[2πi·2·(3/4+δ2)] + f·exp[2πi·2·(1/4+δ2)] + f·exp[2πi·2·(1/4+δ2)] 

+ … 

          f·exp[2πi·2·δ2] + f·exp[2πi·2·δ2] + f·exp[2πi·2·(1/2+δ2)] + f·exp[2πi·2·(1/2+δ2)]  

       = 4 f·[exp(2πi·2·δ1) - exp(2πi·2·δ2)] 

To ensure F200 is different from zero, δ1 ≠ δ2. 

 

The dynamic electron diffraction simulation result is shown in Fig. S7. The atomic 

displacement is 0.005ac (~ 0.042 Å), which is larger than the spatial resolution of neutron 

scattering in(7, 10). However, the “forbidden” peaks, e.g., {200} and {600}, are not observed in 

the neutron scattering experiments, which indicate the extra “forbidden” peaks are mainly from 

electronic structure, i.e., charge ordering phase. 

Space group and point group analysis based on the CO model 

The point group of 𝐹𝑑3̅𝑚 space group is Oh, which has 48 symmetry operations. The charge 

ordering structure by splitting atomic coordinates on 16d site reduces the symmetry operations 

from 48 to 12. According to the maximum non-isomorphic subgroups in 𝐹𝑑3̅𝑚 space group, the 

point group is reduced from Oh to D3d, and the corresponding space group is transformed from 

𝐹𝑑3̅𝑚 (𝑁𝑜. 227) to 𝑅3̅𝑚 (𝑁𝑜. 166). As we mentioned above, there are four types of charge 

distribution model. In each type of model, one three-fold rotational symmetry along <111> 

directions is preserved, the rotational symmetry in the other three directions are broken.  

CO peak intensity and diffuse scattering intensity comparison 

In the in situ cooling TEM experiment, we observed diffuse scattering signal right above 

phase transition temperature Tv. The diffraction pattern shown below in Fig. S8 is taken at 121 K 

from Sample 1. The sharp “forbidden” peaks from the monoclinic phase become smear and turn 

to diffuse. Simultaneously, the charge ordering peaks are still observable. The intensities of the 

diffuse scattering signal and charge ordering peaks are comparable. However, the neutron study 

in(7, 10, 11) detected the diffuse scattering signal but did not observe charge ordering peaks, which 



 

 

 

 

indicates electronic ordering contributes more to the {200} reflections in the high-temperature 

cubic phase. 

Form factor calculation for electron scattering and X-ray scattering 

       In order to compare the sensitivity to the valence electron on Fe ions, we calculated to the 

form factor Fe2+ and Fe3+ form factors as a function of scattering vector, the calculated form factor 

squared (𝑓2) are shown in Fig. S9. At the scattering vector of {200} reflection, q = 0.119 Å-1, the 

𝑓2 difference between 𝑓𝑒
2(𝐹𝑒2+) and 𝑓𝑒

2(𝐹𝑒3+) is much larger than that between 𝑓𝑥
2(𝐹𝑒2+) and 

𝑓𝑥
2(𝐹𝑒3+) , which illustrates electron scattering is more sensitive to the valence charge 

disproportion at small scattering angles. 

CO peak intensity as a function of valence charge on Fe ions 

Figure 2b shows that the intensity of CO peak increases upon cooling and reaches a maximum 

value around the phase transition temperature. To figure out the intensity variation in the cubic 

phase, which is mainly related to the charge ordering, we calculated the intensity variations by 

changing the charge discrepancy on the Fe ions. The calculated result is shown in Fig. S10. When 

the charge is uniformly distributed on the Fe ions (𝐹𝑒𝑜𝑐𝑡.
2.5+), that is, no charge ordering exists (δ1= 

δ2 = 0), the CO peak intensity is zero. The CO peak shows up, when the charge discrepancy exists 

among the Fe ions shown in Fig. S10b. The calculated result also demonstrates that the larger 

charge discrepancy, the higher intensity on CO peak. 

In situ heating TEM experiment  

To explore whether the nematic phase can be thermally removed at high temperature, Sample 

1 was gradually heated up from room temperature to 851 K and the electron diffraction patterns 

were captured at 325 K, 349 K, 372 K, 423 K, 625 K, 758 K and 851 K, respectively. The 

diffraction patterns at a few temperatures are shown in Figs. S11a-S11d. The CO peaks can be 

observed until 423 K and there are some extra peaks start to show up at 625 K. Additionally, the 

diffuse scattering signal is enhanced in the background at higher temperatures. we infer that the 

sample could be damaged by the heating effect, due to the sample being thin susceptible to 

stoichiometry changes at high temperatures. We analyzed the electron diffraction patterns taken 

below 625 K and the results are shown in Fig. S11e. Upon warming, the CO peak intensity gets 

reduced and the peak width gets broader, demonstrating the charge disproportion between Fe ions 

is smaller and the coherent length is decreased due to the thermal effect. Based on the in situ 

heating experiment, we deduce that the hypothetical temperature at which the nematicity 

disappears is higher than 423 K and does not necessarily exist at all. 

Two possible scenarios in the Verwey transition upon cooling 

The precursor behaviors in the Verwey transition have been observed and discussed, which 

presented as diffuse scattering in the diffraction techniques, such as, electron diffraction, 



 

 

 

 

synchrotron x-ray diffraction and neutron scattering (10–12, 62). The temperature range of the 

diffuse scattering observation highly depends on the sample quality and the stoichiometry. It is 

worthy of mentioning that we observed these diffuse scattering as well on the electron diffraction 

patterns from our well calibrated Fe3O4 samples: above the Verwey temperature, the diffuse 

scattering signals have significantly broadened and weak intensity distribution at barely defined q 

position similar (but not identical) to those reflections from the low-temperature trimeron phase. 

Hitherto, the origin of the diffuse scattering is still a highly debated issue that could arise from 

multiple possibilities, such as a short-range trimeron order. A x-ray pair distribution function study 

demonstrated that the structural distortion within Third Unit Cell range was found to immediately 

disappear when the temperature is increased across the Verwey transition, while the local structural 

distortion within First Unit Cell range appears to exist to high temperature of about 800 K (13). 

However, it is still challenging for us to accurately interpret the nature of the structural distortions 

and the short-range trimeron order. 

The discovery of the electronic nematicity at the temperatures above the Verwey transition is 

the center of the manuscript. While the precursors of trimerons may coexist with nematic reflection 

over a range of temperatures, the evolution from nematicity to trimerons involves a more 

fundamental change in the underlying electronic structure of the material. As shown in Fig. S12, 

two phase-transition scenarios upon cooling are compared. Whether electronic nematic phase 

exists at the temperatures above the Verwey transition would result in distinctive experimental 

observations across the Verwey transition with fundamentally different driving mechanisms from 

theoretical perspective. For example, electronic nematicity (rhombohedral; cubic symmetry is 

already broken) can help stabilize trimeron order (monoclinic) by providing a preferred 

directionality for the electronic degrees of freedom that participate in trimeron formation.  

On the experimental side, if we perform thermal cycling in the vicinity of the Verwey 

transition, that preferred direction locally in the monoclinic phase is randomly selected every time 

when the system is cooled down below the Verwey temperature without long-range nematicity, 

while the preferred direction is pre-selected by the nematic order locally through each thermal 

cycling. Of course, in a realistic experiment, other effects such as strain and defects could also help 

to pre-select the preferred direction in the monoclinic phase. Nevertheless, for those two scenarios 

in Fig. S12, the Verwey transition involves very different thermal fluctuations and thus they must 

belong to two distinct families of phase transitions, as will be shown below from the theory side. 

From the theoretical point of view, the two scenarios in Fig. S12 belong to two different 

universality classes and they are described by different field theories. This can be demonstrated by 

an analogy. We can think of the trimeron ordered insulating state as a solid (crystal or smectic) 

formed by electrons, while the high-temperature cubic state is an electron liquid (34). In the top 

scenario in Fig. S12, the Verwey transition corresponds to a direct solid-liquid transition. In 

contrast, in the bottom scenario in Fig. S12, the Verwey transition corresponds to a transition 

between a solid/smectic and nematic fluid. From the study of classical liquid crystals, the bottom 

scenario is known to be highly unconventional, where nematic order parameter serves the role of 

a gauge field (37, 63, 64). 



 

 

 

 

In summary, our finding of the electronic nematicity reveals that the Verwey transition 

belongs to a new universality class, different from the conventional picture. The substantial impact 

of the electronic nematic phase can be demonstrated experimentally and theoretically for 

understanding the driving mechanisms of the Verwey transition.  

Charge order arrangement in cubic phase and monoclinic phase 

In the cubic phase, there are four atomic layers of octahedral Fe ions in one-unit cell along 

the c axis in the charge ordering models. Below Tv, the unit cell is expanded into √2𝑎 × √2𝑎 × 2𝑎 

in the monoclinic phase with trimeron order. Thus, there are eight atomic layers of octahedral Fe 

ions along the c axis in the monoclinic phase. To simplify the charge distribution sketch, the 

valence states of Fe ions are rounded to the nearest integer in the low-temperature phase, as shown 

in (2). The charge distribution in each layer in the electronic nematicity phase and trimerons phase 

is shown in Figs. S13 and S14, respectively. 

Intensity variation Bragg peaks during photoexcitation (@30K, pump fluence 4 mJ·cm-2) 

The MeV UED experiment was taken at temperature ~ 30 K, where the structure is 

monoclinic with the trimeron charge ordering. We prepared a UED single-crystal sample at the 

[110] zone axis for intensity measurements from more Bragg / SL peaks than the [001] zone shown 

in Fig. 1 and Fig. 2. During the UED experiment, in order to enhance the SLs intensity, the sample 

was slightly tilted off the zone axis on purpose as shown in Fig. S15. All the SL peak intensities 

drop quickly in the first 700 fs while no obvious change can be measured from Bragg peak 

intensities. A slow dynamic process follows, which starts from ~ 700 fs and lasts at least a few ps 

in our observations, which is consistent with the timescale observed in the ultrafast x-ray 

diffraction study (47).  

Based on the signal noise ratio of intensity change on each Bragg peak, we found that the 

intensity variations can be classified as two typical types: one type is intensity decreasing (marked 

in blue color); another type is intensity increasing (marked in yellow color),which are labeled in  

Fig. S15. The measured peaks are numbered. The equivalent (ℎ𝑘𝑙) and (ℎ̅�̅�𝑙)̅ reflections are 

labeled using the same number. 

The temporal evolutions of the Bragg peaks are shown below in Fig. S16. These Bragg peaks 

are selected considering the signal noise ratio. 

Dynamic electron diffraction simulation for UED results 

To understand the peak intensity variations, we performed dynamic electron diffraction 

analysis considering atomic charge distribution, atomic displacements, and existence of twin 

variants. Since the UED sample was cut from a bulk material and thinned down to less than 100 

nm using Focused Ion Beam, the thickness of the sample is larger than that of the typical cleaved 

2D materials and the bulk sample could be relatively flat. That is, the precession effect is reduced, 

and the multiple scattering effect is enhanced. Therefore, we performed dynamic electron 

diffraction simulation using Bloch wave method. Due to the multiple twin variants captured in the 



 

 

 

 

UED experiment, we considered the Bragg peaks coming from each twin structure. Since the 

diameter of electron probe is around 100 µm, we assume the fraction of domains is fixed and 

evenly distributed in the electron diffraction calculation. All the peaks considered in the simulation 

are listed in Table S4 and Table S5. Each reflection in the UED pattern is numbered, e.g., B1 

(Bragg peak 1), SL1 (superlattice peak 1). 

A. Intensities of Bragg peaks and SLs with different valence state of Fe ions on octahedral site 

The charge ordering model for the electron diffraction calculation is based on the trimeron 

model at low temperature. We tuned the charge discrepancy of Fe ions in the trimeron, e.g., 2.6+, 

2.4+; 2.7+, 2.3+, etc., and calculated the corresponding intensities of all the measured Bragg peaks 

and SLs. The calculated results are shown in the plot in Fig. S17. The calculated result indicates 

that charge discrepancy has notable impact on the intensity of SLs, compared with the intensity 

variation of Bragg peaks. The diffraction calculations reveal that the intensity change of the SL 

peaks mainly comes from the change in electronic order parameter and the intensity variations of 

the Bragg peaks can be mostly attributed to atomic displacement, i.e., lattice distortions. 

B. Intensities of Bragg peaks induced by phonon modes 

According to the literature research, Refs(40, 41, 47) pointed that there are three dominant 

phonon modes in the cubic phase involved in the phase transition: X3 (transverse optical phonon); 

Δ5 (transverse acoustic phonon) and Γ5. X3 and Δ5 phonon modes correspond to the primary order 

parameters for the structural phase transition. To investigate each specific phonon effect in the 

monoclinic phase, we built atomic displacement model according to each frozen phonon mode and 

calculated intensities of Bragg peaks and SLs shown in Figs. S18-S20. Since these phonon modes 

with X3 and Δ5 symmetry remarkably distort the octahedral sites, in atomic distortion models, we 

only focus on the Fe ions located in the octahedral sites, i.e., involved in the trimeron ordering, so 

the Fe ions on the tetrahedral sites are omitted. 

Calculation result based on Γ5 phonon mode Figure S18 is the intensity variation induced by 

the Γ5 phonon mode, which is related to the β angle changes from 90º to 90.23º without affecting 

the relative atomic positions in the unit cell during the phase transition as shown in Fig. S18a. In 

the calculation, the β angle in the monoclinic phase is changed from 90.23º to 90º step by step. 

The calculation result indicates that β angle variation has little impact on the reflection intensities. 

Figure S18b is a representative result calculated for Bragg peak 1 and SL 1. Hence Γ5 phonon 

mode is not the dominant mode during the photoexcitation process. 

Calculation result based on Δ5 phonon mode Figure S19a shows atomic displacements 

corresponding to Δ5 phonon mode. For the Fe ions on the octahedral site, there are total 8 Fe-O 

layers in one unit cell in the monoclinic phase. The right part in Fig. S19a shows the relative 

amplitude of the atomic displacement in each layer. We calculated the intensities of Bragg peaks 

after moving the atoms off the original positions. The calculated intensity variation due to atomic 

displacement is in Figs. S19b and S19c. The calculated intensity for each Bragg peak based on the 



 

 

 

 

original monoclinic phase is the reference for the intensity normalization. The Bragg peaks present 

different responses to the atomic displacements in the calculation. The intensities of the Bragg 

peaks shown in Fig. S19b are increased after photoexcitation in our experimental measurement, 

but the calculated intensities of Bragg peaks #5 and #16 decrease. Likewise, the intensities of the 

Bragg peaks shown in Fig. S19c decrease in the experimental observation. Calculated intensity of 

Bragg peak #30 increases, which is not consistent with the experiment. Therefore, we can conclude 

that Δ5 phonon mode is not the major contribution to the intensity changes after photoexcitation. 

Calculation result based on X 3 phonon mode The calculated intensities for the Bragg peaks 

based on the X3 phonon mode are shown in Fig. S20. All the trends of intensity variations are 

consistent with the measurement results. Hence, we can conclude that X3 phonon mode is highly 

excited through the strong electron-phonon coupling upon photoexcitation. 

  



 

 

 

 

 

 

Fig. S1.  

Four probe resistance measurements for Sample 1(commercial sample, SurfaceNet GmbH, 

Germany) and Sample 2 (from Komarek group). The samples were measured at zero field. The 

inset is an enlarge view of data in the vicinity of phase transition. Tv in Sample 1 is ~ 115 K, and 

Tv in Sample 2 is ~ 123.4 K. The measurement results demonstrate that the phase transitions in 

both samples are first-order phase transition, i.e., Verwey transition. 

  



 

 

 

 

 

Fig. S2.  

A series of electron diffraction patterns of Sample 1 along <001> zone axis taken @ 90 K, 

130 K, 223 K, 300 K and 423 K. a Electron diffraction pattern taken at room temperature before 

cooling down, from the inverse spinel cubic phase; b Electron diffraction pattern from the 

monoclinic phase; c-f Diffraction patterns captured during the warming process. The inserts are 

the enlarged (200) peak, which is survived above the phase transition temperature. 

  



 

 

 

 

 

Fig. S3. 

In situ cooling TEM experiment for Sample 2. a-d Electron diffraction patterns along <001> 

zone axis during the warming process. The inserts are the persistent {200} peaks above the phase 

transition. 

  



 

 

 

 

 
Fig. S4. 

Dynamic electron diffraction simulation including the appropriate sample thickness and 

multiple scattering effect. Electron diffraction calculation from the standard cubic spinel 

structure in Fe3O4 along [001] direction. {200} reflections are still forbidden. 

  



 

 

 

 

 

 
Fig. S5. 

Charge distribution along <111> directions in four variants. a The valence state with Fe(2.5+δ1)+ 

is on subgroup 1 (1/2, 1/2, 1/2), the valence state of Fe ions on subgroup 2 (1/4, 3/4, 0), subgroup 

3 (3/4, 0, 1/4), and subgroup 4 (0, 1/4, 3/4) is Fe(2.5+δ2)+. b-d The valence state with Fe(2.5+δ1)+ is on 

(1/4, 3/4, 0), (3/4, 0, 1/4), (0, 1/4, 3/4) subgroups, respectively. The valence state with Fe(2.5+δ2)+ is 

on the other three subgroups. In each charge ordering model, only one three-fold rotational 

symmetry is preserved along <111> directions, which is highlighted. Only Fe ions on octahedral 

sites are shown in the models. 

  



 

 

 

 

 

Fig. S6. 

Electron diffraction simulation result. Dynamic calculation result based on the charge ordering 

model, (200) and (020) reflections are marked by red circles. 

  



 

 

 

 

 
Fig. S7. 

Electron diffraction simulation of atomic displacement model. The displacement is 0.005ac 

and the sample thickness is 60 nm for the dynamic simulation. 

  



 

 

 

 

 
Fig. S8. 

Electron diffraction pattern taken slightly above Tv. a and b patterns are the same diffraction 

pattern by changing image contrast. The diffuse scattering signal is observable in a. Diffuse 

scattering signals with different shapes are enlarged in the inserts. The insert plot is the averaged 

line profile intensity from these diffuse scattering signals. b shows the charge ordering {200} 

reflections. The averaged line profile intensity of these four peaks is inserted. The diffraction 

patterns were taken from Sample 1. 

  



 

 

 

 

 
Fig. S9. 

Calculated electron form factor fe and x-ray form factor fx for Fe3+ and Fe2+. The normalized 

form factor squared (normalized by the form factor of neutral Fe atom (Fe0) are plotted as a 

function of scattering vector, s (Å-1). The vertical red line indicates the scattering vector of {200}. 

The difference of form factor squared between 𝑓𝑒
2(𝐹𝑒2+) and 𝑓𝑒

2(𝐹𝑒3+) is marked by the black 

arrows, and that of 𝑓𝑥
2(𝐹𝑒2+) and 𝑓𝑥

2(𝐹𝑒3+) by the blue arrows. This difference illustrates the high 

sensitivity of electrons to valence charge at small scattering vectors. 

  



 

 

 

 

 
Fig. S10. 

CO peak intensity calculation as a function of valence charge in cubic phase. a Crystal 

structure in the cubic phase, pink and yellow spheres are the Fe ions on the octahedral sites with 

different valence states, the grey sphere is the oxygen. The Fe ions on the tetrahedral sites are 

omitted. b Calculation result: CO {200} peak intensity as a function of the valence charge 

Fe(2.5+δ1)+ on Fe ions. 



 

 

 

 

 
Fig. S11. 

Electron diffraction patterns in the in situ TEM heating experiment at a 423 K, b 625 K, c 

758 K and d 851 K. (200) reflection is shown in the insert in a. The insert in b is one of the extra 

peaks appearing at high temperatures. These extra peaks should not be observed in the cubic 

structure and appear upon warming. The arrows indicate the positions of the extra peak, which 

locates in the middle of two Bragg peaks. The arrows in c are used to highlight the extra peaks at 

758 K. The diffuse scattering signal is strong in c and d. e Peak width and peak intensity of CO 

reflections as a function of temperature upon heating from 300 K, measured from Sample 1. 

  



 

 

 

 

 
Fig. S12. 

A comparison of two possible phase-transition scenarios in Fe3O4 upon cooling. Short-range 

trimerons may exist in a long-range trimeron-disordered phase with enhanced order parameter 

from short-range trimerons as temperature decreased (Top). Or short-range trimerons may exist in 

a long-range electronic nematic phase and both phases evolve with enhanced order parameters 

upon cooling (Bottom). Note that the plots of the order parameters (red lines) are only eye guides 

and may not reflect the real case quantitatively. These two scenarios would result in distinctive 

experimental observations across the Verwey transition with fundamentally different driving 

mechanisms from theoretical perspective. 



 

 

 

 

 
Fig. S13. 

Charge order arrangement in each layer in cubic phase. a-d are four types of charge 

distribution. The left panel is one unit cell of cubic structure. The four Fe atoms are from octahedral 

sites. Other Fe atoms and oxygen atoms are omitted. The coordinates are (1/2, 1/2, 1/2), (1/4, 3/4, 

0), (3/4, 0, 1/4), (0, 1/4, 3/4), which represent the four subgroups, mentioned in Table S2. In the 

charge ordering model, the valence charge in one subgroup is different with other three subgroups. 

a shows the valence charge of Fe atom at (1/2, 1/2, 1/2) is different with other three atoms, which 

is highlighted by pink color, and the valence charge is Fe(2.5+δ1)+. The valence charge in the other 

three atoms is the same, i.e., Fe(2.5+δ2)+, which is in yellow color. According to the face center 

symmetry in the cubic structure, each atom has another three equivalent atoms as shown in Table 

S2. There are total 16 Fe atoms in the octahedral sites, distributed in four layers in one unit cell. 

The unit cell is outlined by the black frame. The charge distribution in each layer along c axis is 

shown in the right panel. In b, c and d, the atom with the valence charge of Fe(2.5+δ1)+ locates in 

(1/4, 3/4, 0), (3/4, 0, 1/4), (0, 1/4, 3/4), respectively. 

  



 

 

 

 

 
Fig. S14. 

Charge order arrangement in each layer in the monoclinic phase. The measurement result is 

from in(2). In the monoclinic structure, there are eight layers of octahedral Fe ions in one-unit cell. 

z is the layer number along c axis. The purple and orange spheres represent Fe ions with different 

valence states, e.g., Fe3+ and Fe2+, which are rounded to the nearest integer. 

  



 

 

 

 

 
Fig. S15. 

UED pattern at 30 K. The measured Bragg peaks are marked with numbers. The equivalent peaks 

are using the same number. The Bragg peaks shown with blue and yellow color present clear 

intensity decreasing and increasing tendency after photoexcitation, respectively. The SLs 

highlighted by circles. 

  



 

 

 

 

 
Fig. S16. 

Temporal evolutions of the Bragg peaks. a-f Intensities of Bragg peaks are decreasing; g-l 

Intensities of Bragg peaks are increasing as a function of time. Error bars represent the standard 

deviation in the mean of intensity before time zero. The solid line is a guide to the eye. 

  



 

 

 

 

 
Fig. S17. 

Electron diffraction calculation result on charge discrepancy on Fe ions in the monoclinic 

phase. The peak intensity is set to 1 as a reference, when the valence electron on the Fe ions is 

2.5+, i.e., charge discrepancy is zero. The intensity variations induced by the charge discrepancy 

on each Bragg peak and SL are calculated as a function of charge disproportion on Fe ions. 

  



 

 

 

 

 
Fig. S18. 

Γ5 phonon mode. a Sketch of phonon Γ5 mode, which is related to the β angle change during the 

phase transition from 90˚ in the cubic phase to 90.23˚ in the monoclinic phase. b Bragg peak 1 and 

SL 1 Intensity variation induced by angle β changing. The intensity in the monoclinic phase is the 

reference as 1.  

  



 

 

 

 

 
Fig. S19. 

Δ5 phonon mode. a Atomic displacements model corresponding to the Δ5 phonon mode. The 

arrows present the direction of atomic displacements, and the length of arrow is proportional to 

the displacement amplitude, which is shown in the sine wave curve in the right part. The red dots 

and green dots show the relative displacement in each layer in one unit cell along z direction. b 

and c Calculated intensities for the Bragg peaks we studied. The red arrow indicates the measured 

intensity of the Bragg peaks shown in b are increasing as a function of time in the experiment; the 

bule arrow indicate the intensities of those reflection in c are decreasing with time in the 

experimental observation. 

  



 

 

 

 

 
Fig. S20. 

Calculation results based on X3 phonon mode. a and b Calculated intensities for the Bragg peaks 

based on X3 phonon mode. The red arrow indicates the measured intensity of the Bragg peaks 

shown in a are increasing as a function of time; the blue arrow indicates the intensities of those 

reflection in b are decreasing with time measured from the experimental data. 

  



 

 

 

 

Table S1. Wyckoff position in 𝑭𝒅�̅�𝒎 cubic phase 

Atom Multiplicity x y z 

Fe (tet.) 8a 1/8 1/8 1/8 

 Fe (oct.) 16d 1/2 1/2 1/2 

O 32e 0.2549 0.2549 0.2549 

 

  



 

 

 

 

Table S2. Fe Atom position in the octahedral sites 

F.C.C (0, 0, 0) (0, 1/2, 1/2) (1/2, 0, 1/2) (1/2, 1/2, 0) 

subgroup 1 f1 (1/2, 1/2, 1/2) (1/2, 0, 0) (0, 1/2, 0) (0, 0, 1/2) 

subgroup 2 f2 (1/4, 3/4, 0) (1/4, 1/4, 1/2) (3/4, 3/4, 1/2) (3/4, 1/4, 0) 

subgroup 3 f3 (3/4, 0, 1/4) (3/4, 1/2, 3/4) (1/4, 0, 3/4) (1/4, 1/2, 1/4) 

subgroup 4 f4 (0, 1/4, 3/4) (0, 3/4, 1/4) (1/2, 1/4, 1/4) (1/2, 3/4, 3/4) 

Where fi, i =1, 2, 3, 4, is the atom form factor of Fe ions on the 16d site.  

  



 

 

 

 

Table S3. Atomic displacements (δi): 

F.C.C (0, 0, 0) (0, 1/2, 1/2) (1/2, 0, 1/2) (1/2, 1/2, 0) 

subgroup 1 (1/2+δ1, 1/2, 1/2) (1/2+δ1, 0, 0) (δ1, 1/2, 0) (δ1, 0, 1/2) 

subgroup 2 (1/4+δ2, 3/4, 0) (1/4+δ2, 1/4, 1/2) (3/4+δ2, 3/4, 1/2) (3/4+δ2, 1/4, 0) 

subgroup 3 (3/4+δ2, 0, 1/4) (3/4+δ2, 1/2, 3/4) (1/4+δ2, 0, 3/4) (1/4+δ2, 1/2, 1/4) 

subgroup 4 (δ2, 1/4, 3/4) (δ2, 3/4, 1/4) (1/2+δ2, 1/4, 1/4) (1/2+δ2, 3/4, 3/4) 

 

  



 

 

 

 

Table S4. Bragg peaks included in the diffraction simulation 

 B1 B2 B3 B5 B7 B11 

[100]LT 
(0 2 6̅) (0 4 8̅) (0 6 10̅̅̅̅ ) (0 6 6̅) (0 2 2̅) (0 8 0) 

(0 2̅ 6) (0 4̅ 8) (0 6̅ 10) (0 6̅ 6) (0 2̅ 2) (0 8̅ 0) 

[010]LT 
(2 0 6) (4 0 8) (6 0 10) (6 0 6) (2 0 2) (8 0 0) 

(2 ̅0 6̅) (4̅ 0 8̅) (6̅ 0 10̅̅̅̅ ) (6̅ 0 6̅) (2̅ 0 2̅) (8̅ 0 0) 

[111]LT 
(4 2̅ 2̅) (6 2̅ 4̅) (8 2̅ 6̅) (6 0 6̅) (2 0 2̅) (4̅ 4̅ 8) 

(4̅ 2 2) (6̅ 2 4) (8̅ 2 6) (6 ̅0 6) (2̅ 0 2) (4 4 8̅) 

[1̅11]𝐿𝑇 
(2 4 2̅) (2 6 4̅) (2 8 6̅) (0 6 6̅) (0 2 2̅) (4 4̅ 8) 

(2̅ 4̅ 2) (2 6 4̅) (2̅ 8̅ 6) (0 6̅ 6) (0 2̅ 2) (4̅ 4 8̅) 

[11̅1]𝐿𝑇 
(2 4 2) (2 6 4) (2 8 6) (0 6 6) (0 2 2) (4̅ 4 8) 

(2̅ 4̅ 2̅) (2̅ 6̅ 4̅) (2̅ 8̅ 6̅) (0 6̅ 6̅) (0 2̅ 2̅) (4 4̅ 8̅) 

[111̅]𝐿𝑇 
(2 4̅ 2̅) (2 6̅ 4̅) (2 8̅ 6̅) (0 6 6) (0 2 2) (4 4 8) 

(2̅ 4 2) (2̅ 6 4) (2̅ 8 6) (0 6̅ 6̅) (0 2̅ 2̅) (4̅ 4̅ 8̅) 

 B14 B15 B16 B17 B23 B30 

[100]LT 
(0 0 8) (0 2 10̅̅̅̅ ) (0 4 12̅̅̅̅ ) (0 6 14̅̅̅̅ ) (0 6 18̅̅̅̅ ) (0 8 20̅̅̅̅ ) 
(0 0 8̅) (0 2̅ 10) (0 4̅ 12) (0 6̅ 14) (0 6̅ 18) (0 8̅ 20) 

[010]LT 
(0 0 8) (2 0 10) (4 0 12) (6 0 14) (6 0 18) (8 0 20) 
(0 0 8̅) (2̅ 0 10̅̅̅̅ ) (4̅ 0 12̅̅̅̅ ) (6̅ 0 14̅̅̅̅ ) (6̅ 0 18̅̅̅̅ ) (8̅ 0 20̅̅̅̅ ) 

[111]LT 
(4 4̅ 0) (6̅ 4 2) (8 4̅ 4̅) (10 4̅ 6̅) (12 6̅ 6̅) (14 6̅ 8̅) 
(4̅ 4 0) (6 4̅ 2̅) (8̅ 4 4) (10̅̅̅̅  4 6) (12̅̅̅̅  6 6) (14̅̅̅̅  6 8) 

[1̅11]𝐿𝑇 
(4 4 0) (4̅ 6̅ 2) (4 8 4̅) (4 10 6̅) (6 12 6̅) (6 14 8̅) 
(4̅ 4̅ 0) (4 6 2̅) (4̅ 8̅ 4) (4 ̅10̅̅̅̅  6) (6̅ 12̅̅̅̅  6) (6̅ 14̅̅̅̅  8) 

[11̅1]𝐿𝑇 
(4 4 0) (4̅ 6̅ 2̅) (4 8 4) (4 10 6) (6 12 6) (6 14 8) 

(4̅ 4̅ 0) (4 6 2) (4̅ 8̅ 4̅) (4̅ 10̅̅̅̅  6̅) (6̅ 12̅̅̅̅  6̅) (6̅ 14̅̅̅̅  8̅) 

[111̅]𝐿𝑇 
(4 4̅ 0) (4 6̅ 2̅) (4 8̅ 4̅) (4 10̅̅̅̅  6̅) (6 12̅̅̅̅  6̅) (6 14̅̅̅̅  8̅) 
(4̅ 4 0) (4̅ 6 2) (4̅ 8 4) (4̅ 10 6) (6̅ 12 6) (6̅ 14 8) 

 

 

  



 

 

 

 

Table S5.  Superlattice peaks included in the diffraction simulation: 

 SL1 SL2 SL3 SL4 

[100]LT 
(0 4̅ 6) (0 2̅ 4) (0 4̅ 10) (0 6̅ 12) 

(0 4 6̅) (0 2 4̅) (0 4 10̅̅̅̅ ) (0 6 12̅̅̅̅ ) 

[010]LT 
(4 0 6) (2 0 4) (4 0 10) (6 0 12) 

(4̅ 0 6̅) (2̅ 0 4̅) (4̅ 0 10̅̅̅̅ ) (6̅ 0 12̅̅̅̅ ) 

[111]LT 
(5 1̅ 4̅) (3 1̅ 2̅) (7 3̅ 4̅) (9 3̅ 6̅) 

(5̅ 1 4) (3̅ 1 2) (7̅ 3 4) (9̅ 3 6) 

[1̅11]𝐿𝑇 
(1 5 4̅) (1 3 2̅) (3 7 4̅) (3 9 6̅) 

(1̅ 5̅ 4) (1̅ 3̅ 2) (3̅ 7̅ 4) (3̅ 9̅ 6) 

[11̅1]𝐿𝑇 
(1 5 4) (1 3 2) (3 7 4) (3 9 6) 

(1̅ 5̅ 4̅) (1̅ 3̅ 2̅) (3̅ 7̅ 4̅) (3̅ 9̅ 6̅) 

[111̅]𝐿𝑇 
(1 5̅ 4̅) (1 3̅ 2̅) (3 7̅ 4̅) (3 9̅ 6̅) 

(1̅ 5 4) (1̅ 3 2) (3̅ 7 4) (3̅ 9 6) 
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