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This document provides details on the definitions of U and ∆, electron versus hole notation, the choice of model
parameters, the parameter dependence of the spectra, and the angular dependence of the spectra.

I. DEFINITIONS OF U AND ∆

Here we provide further details on the definition of the Coulomb and charge transfer energies. Since we need to
accurately account for the many body effects, U and ∆ are defined in terms of specific electronic configurations in the
atomic limit. U is the energy required for a dni d

n
j → dn−1i dn+1

j transition and ∆ is defined in terms of a dni → dn+1
i L

transition, where i and j label transition-metal (TM) sites and L denotes an oxygen ligand hole. In the present
case, the reference occupation is n = 9 electrons (or one hole). These definitions are the same as that of the widely
used Zaanen-Sawatzky-Allen (ZSA) scheme [1]. We start by writing the Hamiltonian in hole language, which is the
notation used throughout the main text:

H =
∑
σ

εdd
†
σdσ +

∑
δ,σ

εpp
†
δ,σpδ,σ + Und↑n

d
↓ +

∑
δ

Uppn
p
δ,↑n

p
δ,↓. (1)

For simplicity, this and the following equations involve only the dx2−y2 and O 2p orbitals. The same analysis applies
when the whole d shell is included. In hole language, the relevant energies are

E(d0p0) = 0 (2)

E(d1p0) = εd (3)

E(d2p0) = 2εd + U (4)

E(d0p1) = εp. (5)

Coulomb repulsion follows the expected definition

U = E(d0p0) + E(d2p0)− 2E(d1p0) = 2εd + U − 2εd = U. (6)

The charge transfer energy is

∆ = E(d0p1)− E(d1p0) = εp − εd (7)

consistent with the main text. Most literature on cuprates and the low valence nickelates use this hole notation.

II. ELECTRON VERSUS HOLE NOTATION

How does Eq. 1 change when we convert to electron language? In this case, we will use tilde notation to label terms
in electron language. Applying the expected transformations to the operators, H → H̃, dσ → d̃†σ, ndσ → (1− ñdσ), etc.
we obtain the Hamiltonian in electron language

H̃ =
∑
σ

εdd̃σd̃
†
σ +

∑
δ,σ

εpp̃δ,σp̃
†
δ,σ + U(1− ñd↑)(1− ñd↓) +

∑
δ

Upp(1− ñpδ,↑)(1− ñ
p
δ,↓). (8)

We transform the first two terms via commutation rules to give

H̃ = −
∑
σ

εdd̃
†
σd̃σ −

∑
δ,σ

εpp̃
†
δ,σp̃δ,σ + U(1− ñd↑)(1− ñd↓) +

∑
δ

Upp(1− ñpδ,↑)(1− ñ
p
δ,↓). (9)

Expanding the last two terms gives

H̃ = −
∑
σ

(εd + U)d̃†σd̃σ −
∑
δ,σ

(εp + Upp)p̃
†
δ,σp̃δ,σ + Uñd↑ñ

d
↓ +

∑
δ

Uppñ
p
δ,↑ñ

p
δ,↓, (10)

where some constant terms have been omitted. By comparison to Eq. 1 we can associate ε̃d = −(εd + U), ε̃p =

−(εp + Upp), Ũ = U , and Ũpp = Upp. This follows the expectation that a particle-hole transformation leaves the
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Coulomb interactions unchanged but shifts the on-site energies by the value of the local Hubbard repulsion, reflecting
a change in the vacuum state. Our result in hole language, ∆ = εp−εd, can then be recast as ∆ = −(ε̃p+Upp)+(ε̃d+U)

in electron language, which is the same as ∆̃ = E(d10L) − E(d9). This transformation shows that when comparing
with first principles calculations, care needs to be taken about how the correlations and many body effects are handled.
To do so, one must take into account possible double counting errors [2, 3], which will effectively change the meanings
and values of εd and εp.

III. THE CHOICE OF MODEL PARAMETERS IN ED CALCULATIONS

Here we provide the details about how the parameters are determined/chosen in the exact-diagonalization (ED)
calculations. Although there are many parameters in the original Hamiltonian, most of them are constrained by the
physical considerations described below so that they can be effectively fixed with our quoted accuracy of 1 eV. We
categorize the parameters in four parts.

1. Coulomb interactions. Since we work in the hole language, the on-site Coulomb repulsion for O is not crucial
since double hole occupation on the O sites is unlikely. Therefore, F 0

pp and F 2
pp do not influence our conclusions

and are fixed to standard Hartree-Fock values throughout the calculations [4]. The inter-site Coulomb interaction
Udp is also fixed since the distance between Ni and O atoms means that it is expected to be much smaller than
the Ni on-site Coulomb interactions and thus plays a negligible role [5]. The ratio between F 4

dd and F 2
dd is known

to be approximately 5/8, independent of solid-state screening [6, 7]. The Hund’s exchange in transition-metal
(TM) materials is known empirically to vary between 0.4 and 1.2 eV [6, 7]. Hence, it is safe to fix it with
an estimated uncertainty much smaller than 1 eV. By doing so, the only tunable parameter with the largest
uncertainty is the Ni intra-orbital Coulomb repulsion U . Once U is chosen, F 0

dd, as well as the inter-orbital
Coulomb interactions, is uniquely determined through our procedure.

2. Hopping integrals. Making use of the Slater-Koster scheme, all the hopping integrals can be derived from two
parameters, Vpdσ and Vppσ. The other two parameters are set as Vpdπ = −Vpdσ/2 and Vppπ = −Vppσ/4 based
on the known scaling of the hopping for TM-O octahedra of this type [8]. This fixes these two parameters with
an accuracy better than our estimated error bar. An additional parameter, η, is used for the Cu2O11 cluster,
since it has apical O bonds, and this is fixed to the standard value [9].

3. Point charge crystal field splitting. The crystal electric field (CEF) splitting is primarily inferred from the
low energy dd excitations and has less of an effect on the charge transfer ones. It has two contributions. The
major one is the p − p and p − d hoppings and the minor one is the point charge CEF. Therefore, once the
hopping integrals are chosen, the point charge CEF parameters can be confidently determined to match the dd
excitations seen at both the O K and Ni L edges with an uncertainty much smaller than 1 eV.

4. Other parameters. The core-hole potential Uq only modifies the peak intensities but not the peak positions
since it is not involved in the ground states and the excited states. So it is fixed to a standard value for the O
K-edge of 6 eV [10]. The charge transfer energy ∆ is the most important quantity we want to extract, so we
treat this as fully tunable.

Points 1-4 leave U , ∆, Vpdσ, and Vppσ, as the only free parameters. These have distinct effects on the Resonant
Inelastic X-ray Scattering (RIXS) spectra, allowing them to be determined by comparison with the RIXS spectra.
The width of feature A along the energy loss axis is primarily determined by Vppσ while its position is a correlated
combination of U , ∆, and Vpdσ, which is further constrained by the superexchange interaction J . We also need to
consider the relative intensities of features within the manifold of feature A as well as the ratio between features A
and B along with their angular dependence. With these constraints, we search the parameter space to match our
RIXS data [Fig. S1], and the results are presented in Fig. 3 and Fig. S2. The primary factor limiting the accuracy is a
range of different ∆ and U values that produce reasonable agreement with the data and which gives us our estimated
error bar of 1 eV. We test our approach by measuring and applying the same analysis to a cuprate. As explained in
the main text, the fact that we obtain values in good accord with the literature validates the accuracy of our approach
within our quoted error bar.

IV. PARAMETER DEPENDENCE OF THE SPECTRA

To test the accuracy of our derived parameters, we investigated the variation of the spectra when changing the
input parameters. Table S1 and Fig. S2 show the range of different ∆ = εpσ values that produce a satisfactory fit
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FIG. S1. Self-absorption corrected RIXS spectra of La4Ni3O8 collected at 40 K. The same set of data produce Fig. 4(a) in the
main text.
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FIG. S2. Calculated RIXS spectra of Ni2O7 cluster using the parameters listed in Table S1. The calculations are performed
with θ = 60◦ and σ polarization. The spectra are shifted along the y axis for clarity.
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TABLE S1. List of parameters used for the Ni2O7 ED calculations in Fig. S2. All parameters are listed in units of eV.

Label εd
x2−y2

εd
3z2−r2

εdxy εdxz/yz εpσ εpπ/pz Vpdσ Vppσ F 0
dd F 2

dd F 4
dd F 0

pp F 2
pp Udp Uq Jcalc

A 0 0.2 0.3 0.5 5.8 5.8 1.55 0.6 4.58 6.89 4.31 3.3 5 1 6 0.083

B 0 0.2 0 0.2 6 6.5 1.63 0.7 6.58 6.89 4.31 3.3 5 1 6 0.085

C 0 0.2 0 0.2 5.9 6.9 1.65 0.7 7.58 6.89 4.31 3.3 5 1 6 0.085

of the spectra. We conclude that ∆ ≈ 6 eV within an error bar of about 1 eV, such that La4Ni3O8 can be robustly
classified as a mixed charge-transfer/ Mott-Hubbard system with ∆ ∼ U . For La2−xSrxCuO4, we were able to further
constrain our values using literature O K-edge RIXS measurements of the undoped sample [11], so the values for
this material are constrained to <∼ 1 eV. This approach is currently impractical for nickelates as efforts to electron
dope La4Ni3O8 have so far not been successful, and infinite-layer nickelate films are inhomogeneous due to spatial
variability in the oxygen reduction [12–18].

V. ANGULAR DEPENDENCE OF O K-EDGE SPECTRA

In this section we explain the angular dependence of the spectra. Figure 4 in the main text was taken at a fixed
scattering angle of 2Θ = 150◦ while varying the incident angle θ. In this way, the angle between the outgoing beam
and the sample surface is θout = θ + 30◦. The incident x-ray polarization was σ and therefore parallel to the sample
b-axis at all θ, whereas the emitted x-ray polarization was not analyzed such that both π and σ polarizations are
detected. To understand the overall angular dependence we calculate the transition probability out of the pσ, pπ, and
pz orbitals at different θ, which captures the main transitions, even though this leaves out some detailed structure
that is present in the full calculations in Fig. 4. Excitations involving pπ are maximized when θout = 90◦ (equivalent
to θ = 60◦) such that all emitted photons are polarized in the ab plane of the sample. Excitations involving pz are
largest as θout gets close to 180◦ such that the π polarized emitted photons are along the sample c-axis.
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FIG. S3. Calculated RIXS intensities for transitions between different combinations of pσ, pπ, and pz as a function of incident
angle θ with σ polarized incident x-rays.
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