## Supplementary information for Doping evolution of the charge excitations and electron correlations in electron-doped superconducting $La_{2-x}Ce_{x}CuO_{4}$

Jiaqi Lin,<sup>1,2,3</sup> Jie Yuan,<sup>2</sup> Kui Jin,<sup>2,3</sup> Zhiping Yin,<sup>4,\*</sup> Gang Li,<sup>1</sup> Ke-Jin Zhou,<sup>5</sup> Xingye Lu,<sup>4,6</sup> Marcus Dantz,<sup>6</sup> Thorsten Schmitt,<sup>6</sup> Hong Ding,<sup>2,3</sup> Haizhong Guo,<sup>7</sup> Mark P. M. Dean,<sup>8,†</sup> and Xuerong Liu<sup>1,‡</sup>

<sup>1</sup>School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

<sup>2</sup>Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China

<sup>3</sup>University of Chinese Academy of Sciences, Beijing 100049, China

<sup>4</sup>Department of Physics and Center for Advanced Quantum Studies,

Beijing Normal University, Beijing 100875, China

<sup>5</sup>Diamond Light Source, Harwell Science and Innovation Campus,

Didcot, Oxfordshire OX11 0DE, United Kingdom

<sup>6</sup>Photon Science Division, Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

<sup>7</sup>School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China

<sup>8</sup>Department of Condensed Matter Physics and Materials Science,

Brookhaven National Laboratory, Upton, New York 11973, USA

(Dated: December 16, 2019)

<sup>\*</sup> yinzhiping@bnu.edu.cn

<sup>&</sup>lt;sup>†</sup> mdean@bnl.gov

<sup>&</sup>lt;sup>‡</sup> liuxr@shanghaitech.edu.cn



Supplementary Figure 1. Doping dependence of X-ray absorption spectroscopy (XAS) spectra of  $La_{2-x}Ce_xCuO_4$  (LCCO) at Cu-L<sub>3</sub> edge. (a) XAS white line for x range of 0.11 to 0.18. (b) White line energy and intensity retrieved from fitting. Error bars describe the standard deviation from the least-squares fitting.



Supplementary Figure 2. RIXS spectra with incident beam polarization dependence. Atomic cross sections for  $\pi$  and  $\sigma$  incident beam polarization with grazing exit geometry at  $2\theta = 130^{\circ}$ . The RIXS process at Cu  $L_3$  edge can be written as  $2p^63d^9 \rightarrow 2p^53d^{10} \rightarrow 2p^53d^{9*}$ . This polarization related cross section calculates the ground state  $d_{x^2-y^2} \downarrow$  to the final state  $d_{x^2-y^2} \uparrow$  transition probability for the spin-flip component and non-spin-flip processes assuming that the spin direction lies in the CuO<sub>2</sub> plane.



Supplementary Figure 3. Three typical RIXS spectra fitted with several components at doping x=0.15, for  $q_{\parallel} = (0.06, 0)$ , (0.11, 0) and (0.28, 0). The total RIXS spectrum is fitted with five components: A pseudo-Voigt function for the elastic line, an anti-symmetrized Lorentzian function multiplied by the Bose-Factor and convoluted with resolution function for the paramagnon, a Gaussian function convoluted with the resolution function for the plasmon and a Gaussian function for the dd excitations. Background scattering is treated with a polynominal function.



Supplementary Figure 4. Doping dependence of the plasmon. (a) RIXS spectra of LCCO at Q = (0.11, 0, 1.64) for x = 0.11 to 0.18. The vertical dashed line presents the plasmon energy for x = 0.18. Spectra are offset in vertical direction for clarity. (b,c) RIXS spectra at Q = (0.11, 0, 1.64) and (0.08, 0.08, 1.64). In each panel, spectra for x = 0.11 and x = 0.18 are compared. The shaded peaks show the Gaussian profile representing the plasmon. (d) RIXS spectra measured at Q = (0.11, 0, 1.64) and (0.08, 0.08, 1.64). In each panel, spectra for x = 0.11 and x = 0.18 are compared. The shaded peaks show the Gaussian profile representing the plasmon. (d) RIXS spectra measured at Q = (0.11, 0, 1.64) and (0.08, 0.08, 1.64) show same dispersion with different in-plane directions (H, 0) and (H, H) for x = 0.18. (e) Plasmon energy for each doping. (f) Plasmon full-width at half maximum (FWHM). Error bars describe the standard deviation from the least-squares fitting.



Supplementary Figure 5. Comparison of the imaginary part of the self-energy from the calculated single-particle spectral function for x = 0.1 and 0.2 along the X - M direction. The wiggles near fermi level are artifacts from the fitting of momentum distribution curve (MDC) width.

# 7

#### SUPPLEMENTARY METHODS

**DFT** + **DMFT** calculation. We use density functional theory combined with dynamical mean field theory (DFT+DMFT) [1] to compute the electronic structure of electron-doped LCCO. The density functional theory part is based on the full-potential linear augmented plane wave method implemented in Wien2K [2] in conjunction with Perdew-Burke-Ernzerhof generalized gradient approximation [3] of the exchange correlation functional. DFT+DMFT is implemented on top of Wien2K and documented in [4]. In the DFT+DMFT calculations, the electronic charge is computed self-consistently on the DFT+DMFT density matrix. The quantum impurity problem is solved by the continuous time quantum Monte Carlo (CTQMC) method [5, 6] with Hubbard U=10.0 eV and Hund's coupling J=0.8 eV in the paramagnetic state at temperature of 116 K. The LCCO crystal structure (space group I4/mmm, #139) with lattice constants a = b = 4.01 Å and c = 12.46 Å is used in the calculations [7]. Virtual crystal approximation is employed to approximate the electron doping effect.

#### SUPPLEMENTARY DISCUSSION

Incident beam polarization dependence. Without resolving the scattered beam polarization, RIXS spectra contain both spin filp (SF) and non-spin filp (NSF) components for  $\sigma$ - or  $\pi$ -polarized incidence beam. Nevertheless, the relative contribution of SF and NSF components can be calculated through the single-site polarization dependent scattering matrix [8, 9]. In Supplementary Figure 2, we reproduce the atomic cross section with grazing exit geometry. For in-plane momentum transfer near the Brillouin zone (BZ) center, the NSF component has a larger cross section factor with  $\sigma$  polarized incident beam than  $\pi$  polarized, while the SF component behaviours oppositely. As shown in the main text Figure 2(a)-(b), we compare RIXS spectra for incident beams with  $\sigma$  and  $\pi$  polarization at several  $q_{\parallel}$  points near the BZ center, focusing on the recently discovered mode in electron-doped cuprates. Through the comparison, RIXS spectra with  $\sigma$ -polarized incident beam consistently exhibit higher intensity than  $\pi$ -polarized incident beam, which indicates that the mode has NSF characteristics.

**Electron correlation.** From the single-particle spectral function, we know that the width of MDC is  $Im\Sigma(k,\omega)/v_F$ [10].  $Im\Sigma(k,\omega)$  is the the imaginary part of the self-energy, which is inversely proportional to quasiparticle lifetime,  $v_F$  is the fermi velocity. We extract the MDC width and fermi velocity from the calculated single-particle spectral function in Figure 6 in main text, and plot the imaginary part of the self-energy in Supplementary Figure 5. It shows that the quasiparticle lifetime is longer in x = 0.2 than x = 0.1, especially at negative binding energies, which is directly related to electron correlation effect.

### SUPPLEMENTARY REFERENCE

- [1] Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).
- [2] Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, D. & Luitz, J. Wien2k TU Wien, Austria (2001).
- [3] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
- [4] Haule, K., Yee, C. H. & Kim, K. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn<sub>5</sub>, CeCoIn<sub>5</sub>, and CeRhIn<sub>5</sub> Phys. Rev. B 81, 195107 (2010)
- [5] Haule, K. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. *Phy. Rev. B* 75, 155113 (2007)
- [6] Werber, P., Comanac, A., de' Medici, L., Troyer, M & Millis, A. J. Continuous-Time Solver for Quantum Impurity Models. Phys. Rev. Lett. 97, 076405 (2006).
- [7] Yu, H., Yuan, J., Zhu, B. & Jin, K. Manipulating composition gradient in cuprate superconducting thin films. Sci. China Phys. Mech. 60 087421 (2017).
- [8] Ament, L. J. P., Ghiringhelli, G., Sala, M. M, Braicovich, L. & van den Brink, J. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic x-ray scattering. *Phys. Rev. Lett.* **103**, 117003 (2009).
- [9] Sala, M. M. et al. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L<sub>3</sub> resonant inelastic x-ray scattering. New J. Phys. 13, 043026 (2011).
- [10] Armitage, N. P. et al, Angle-resolved photoemission spectral function analysis of the electron-doped cuprate  $Nd_{1.85}Ce_{0.15}CuO_4$ . *Phys. Rev. B* 68, 064517 (2003)