[Supplementary Material] Ferromagnetic Exchange Anisotropy from Antiferromagnetic Superexchange in the Mixed 3d-5d Transition-Metal Compound $\mathbf{Sr_3CuIrO_6}$

Wei-Guo Yin, $^1,^*$ X. Liu, $^2,^1$ A. M. Tsvelik, 1 M. P. M. Dean, 1 M. H. Upton, 3 Jungho Kim, 3 D. Casa, 3 A. Said, 3 T. Gog, 3 T. F. Qi, 4,5 G. Cao, 4,5 and J. P. Hill 1

¹Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA ²Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA ⁴Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506, USA ⁵Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA (Dated: April 12, 2013)

- I. Large direct exchange between the Ir $5d_{xy}$ and Cu $3d_{x^2-y^2}$ orbitals
- II. In the absence of IrO₆ octahedral distortion
 - a. The zeroth order
 - b. The second-order perturbation
- III. The effects of IrO₆ octahedral distortion
- IV. Spin-wave spectrum
- V. How to fit theory with experiment
- VI. Multi-magnon bound states

 Sr_3CuIrO_6 has one $x^2 - y^2$ hole on a Cu site and one t_{2g} hole on a Ir site. Therefore, we present our work in the hole language for convenience.

I. LARGE DIRECT EXCHANGE BETWEEN THE IR $5d_{xy}$ AND CU $3d_{x^2-y^2}$ ORBITALS

A portion of a Cu-Ir chain of Sr_3CuIrO_6 is shown below in Fig. 1(a). The only magnetic orbital ϕ_{Cu} centered on a Cu^{2+} ion is of $x^2 - y^2$ symmetry and is antisymmetric with regard to the Cu-Ir mirror plane [in Fig. 1(b) this plane is perpendicular to the paper]. The Ir $5d_{xy}$ orbital, $\phi_{Ir,xy}$, is symmetric with regard to the Cu-Ir mirror plane [Fig. 1(c)], even in the presence of the octahedral tilting and distortion. Thus, $\phi_{Ir,xy}$ is always orthogonal to ϕ_{Cu} . As a result, electron hopping between these two orbitals is prohibited and so is the superexchange process. Thus, the leading magnetic interaction between them is the direct exchange interaction, J_F , which is ferromagnetic. From the measured magnon bandwidth, we conclude that J_F is of order of dozens of meV. This is surprising, since direct exchange in TMCs is usually very small. The unusually large J_F comes from the two-electron exchange integral

$$J_F \sim \int rac{
ho(\mathbf{r}_1)
ho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2,$$

where \mathbf{r}_1 and \mathbf{r}_2 are the positions of the two electrons, and $\rho(\mathbf{r}) = \phi_{\mathrm{Cu}}(\mathbf{r})\phi_{\mathrm{Ir},xy}(\mathbf{r})$ the overlap density. As illustrated in Fig. 1(d), $\rho(\mathbf{r})$ has two strongly positive (negative) lobes around the O2 (O5) oxygen atom that bridges the Cu and Ir sites. This is because the tails of $\phi_{\mathrm{Ir},xy}$ and ϕ_{Cu} share the same O2 p_y and O5 p_x orbital characters, and thus well overlap around each of O2 and O5 but with *opposite* sign. The denominator $|\mathbf{r}_1 - \mathbf{r}_2|$ in the above equation means that the contribution to J_{F} when \mathbf{r}_1 and \mathbf{r}_2 are simultaneously near one of O2 and O5 is much larger than that when they are separately around O2 and O5. Then, since $\rho(\mathbf{r})$ is to be squared in the above equation, the contributions from the two strong lobes of $\rho(\mathbf{r})$ become of the same sign, yielding a large J_{F} . (Meanwhile the electron hopping is zero because of the phase cancelation.)

FIG. 1. (a) Cu-Ir chain of Sr_3CuIrO_6 where Cu^{2+} and Ir^{4+} are coordinated by an oxygen plaquette and octahedron, respectively. The IrO_6 octahedral tilting is denoted by $\alpha \simeq 150^\circ$ and the octahedral distortion by $\beta \simeq 82^\circ$. (b) and (c) Schematic drawings of $Cu \ 3d_{x^2-y^2}$ and $Ir \ 5d_{xy}$ Wannier orbitals, ϕ_{Cu} and $\phi_{Ir,xy}$, respectively, for the ideal case of $\alpha = 180^\circ$ and $\beta = 90^\circ$. Note the considerable tails on the oxygen sites due to the metal-oxygen hybridization. (d) Schematic map of the overlap density, $\rho = \phi_{Cu}\phi_{Ir,xy}$. Red (blue) represents positive (negative) values.

II. IN THE ABSENCE OF IrO₆ OCTAHEDRAL DISTORTION

We consider a one-dimensional (1D) model with orbital-dependent Heisenberg exchange interactions (J_F, J_{AF}) between the Cu and Ir sites and with large spin-orbit interaction λ on the Ir sites:

$$H = \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} \left\{ -J_{F} \vec{S}_{\mathbf{m}, x^{2} - y^{2}} \cdot \vec{S}_{\mathbf{n}, xy} + J_{AF} \vec{S}_{\mathbf{m}, x^{2} - y^{2}} \cdot (\vec{S}_{\mathbf{n}, yz} + \vec{S}_{\mathbf{n}, zx}) \right\} + \lambda \sum_{\mathbf{n}} \vec{L}_{\mathbf{n}} \cdot \vec{S}_{\mathbf{n}}, \tag{1}$$

where **m** denotes a Cu site, **n** an Ir site, and $\langle \mathbf{m}, \mathbf{n} \rangle$ means nearest neighbors. $\vec{S}_{\mathbf{n},\gamma} = \sum_{\mu\nu} d^{\dagger}_{\mathbf{n},\gamma,\mu} \vec{\sigma}_{\mu\nu} d_{\mathbf{n},\gamma,\nu}/2$ where $\vec{\sigma}_{\mu\nu}$ is the Pauli matrix and $d_{\mathbf{n},\gamma,\mu}$ is the annihilation operator of an electron with spin $\mu = \uparrow, \downarrow$ and orbital $\gamma = xy, xz, yz$ on the Ir site **n**. $-J_{\rm F} < 0$ is the oxygen-bridged ferromagnetic (FM) exchange coupling due to the orthogonality of the Cu $x^2 - y^2$ orbital to the Ir xy orbital. $J_{\rm AF} > 0$ is oxygen-bridged antiferromagnetic (AF) exchange coupling due to the IrO₆-octahedral-tilting-induced nonorthogonality of the Cu $x^2 - y^2$ orbital to the Ir yz and zx orbitals.

The spin-orbit interaction on the t_{2g} orbitals of the Ir atom may be expressed in the t_{2g} basis of $\{d_{xy\uparrow}, d_{yz\uparrow}, d_{zx\uparrow}, d_{xy\downarrow}, d_{yz\downarrow}, d_{zx\downarrow}\}$ as

$$\lambda \vec{L}_{\mathbf{n}} \cdot \vec{S}_{\mathbf{n}} = \frac{\lambda}{2} \begin{pmatrix} 0 & 0 & 0 & 0 & i & -1 \\ 0 & 0 & i & -i & 0 & 0 \\ 0 & -i & 0 & 1 & 0 & 0 \\ 0 & i & 1 & 0 & 0 & 0 \\ -i & 0 & 0 & 0 & 0 & -i \\ -1 & 0 & 0 & 0 & i & 0 \end{pmatrix}_{\mathbf{n}} . \tag{2}$$

The local energy levels are split into $-\lambda$ for a doublet (total angular momentum $j=\frac{1}{2}$) and $\lambda/2$ for a quadruplet $(j=\frac{3}{2})$. The orthonormal eigenvectors $|j,m\rangle$ are

$$\begin{split} |j &= \frac{1}{2}, m = +\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(d_{xy\uparrow} + \mathrm{i}d_{yz\downarrow} + d_{zx\downarrow}), \\ |j &= \frac{1}{2}, m = -\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(d_{xy\downarrow} + \mathrm{i}d_{yz\uparrow} - d_{zx\uparrow}), \\ |j &= \frac{3}{2}, m = +\frac{3}{2}\rangle = \frac{1}{\sqrt{2}}(\mathrm{i}d_{yz\uparrow} + d_{zx\uparrow}), \\ |j &= \frac{3}{2}, m = +\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2d_{xy\uparrow} - \mathrm{i}d_{yz\downarrow} - d_{zx\downarrow}), \\ |j &= \frac{3}{2}, m = -\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2d_{xy\downarrow} - \mathrm{i}d_{yz\uparrow} + d_{zx\uparrow}), \\ |j &= \frac{3}{2}, m = -\frac{3}{2}\rangle = \frac{1}{\sqrt{2}}(\mathrm{i}d_{yz\downarrow} - d_{zx\downarrow}). \end{split}$$
(3)

In the new $|j,m\rangle$ basis as ordered in Eq. (3), the Cu-Ir coupling part of Eq. (1) is rewritten as

$$-\frac{J_{\rm F}}{6} \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} \begin{pmatrix} (1+2\epsilon)S_{\mathbf{m}}^{z} & S_{\mathbf{m}}^{-} & -\sqrt{6}\epsilon S_{\mathbf{m}}^{+} & \sqrt{2}(1-\epsilon)S_{\mathbf{m}}^{z} & \sqrt{2}S_{\mathbf{m}}^{-} & 0\\ S_{\mathbf{m}}^{+} & -(1+2\epsilon)S_{\mathbf{m}}^{z} & 0 & \sqrt{2}S_{\mathbf{m}}^{+} & -\sqrt{2}(1-\epsilon)S_{\mathbf{m}}^{z} & -\sqrt{6}\epsilon S_{\mathbf{m}}^{-}\\ -\sqrt{6}\epsilon S_{\mathbf{m}}^{-} & 0 & -3\epsilon S_{\mathbf{m}}^{z} & \sqrt{3}\epsilon S_{\mathbf{m}}^{-} & 0 & 0\\ \sqrt{2}(1-\epsilon)S_{\mathbf{m}}^{z} & \sqrt{2}S_{\mathbf{m}}^{-} & \sqrt{3}\epsilon S_{\mathbf{m}}^{+} & (2+\epsilon)S_{\mathbf{m}}^{z} & 2S_{\mathbf{m}}^{-} & 0\\ \sqrt{2}S_{\mathbf{m}}^{+} & -\sqrt{2}(1-\epsilon)S_{\mathbf{m}}^{z} & 0 & 2S_{\mathbf{m}}^{+} & -(2+\epsilon)S_{\mathbf{m}}^{z} & \sqrt{3}\epsilon S_{\mathbf{m}}^{-}\\ 0 & -\sqrt{6}\epsilon S_{\mathbf{m}}^{+} & 0 & 0 & \sqrt{3}\epsilon S_{\mathbf{m}}^{+} & 3\epsilon S_{\mathbf{m}}^{z} \end{pmatrix}_{\mathbf{n}},$$
(4)

for the Cu atom on site **m** and the Ir atom on site **n** where $\epsilon = J_{AF}/J_F > 0$. $\vec{S}_{\mathbf{m}}$ is a shorthand notation of $\vec{S}_{\mathbf{m},x^2-y^2}$.

A. The zeroth order

In the large λ limit, the Kramers doublet (j = 1/2) constitute the low-energy sector of Eq. (1) on the Ir sites. For infinite λ , one may retain only the Kramers doublet subspace of Eq. (4), i.e., the zeroth-order approximation:

$$H^{(0)} = -\frac{J_{\rm F}}{3} \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} S_{\mathbf{m}}^{x} s_{\mathbf{n}}^{x} + S_{\mathbf{m}}^{y} s_{\mathbf{n}}^{y} + (1 + 2\epsilon) S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z}, \tag{5}$$

where $\vec{s}_{\mathbf{n}}$ is the isospin (j = 1/2) on the Ir site given by

$$\vec{s}_{\mathbf{n}} = \frac{1}{2} \sum_{mm'} |j = \frac{1}{2}, m\rangle \vec{\sigma}_{mm'} \langle j = \frac{1}{2}, m'|.$$
 (6)

Since $\epsilon = J_{\rm AF}/J_{\rm F} > 0$, $H^{(0)}$ possesses an easy z-axis anisotropy. The magnon dispersion would be $\omega(k) = \frac{1}{3}J_{\rm F}(1 + 2\epsilon - \cos k)$ with the gap of $2\epsilon J_{\rm F}/3 = 2J_{\rm AF}/3$.

B. The second-order perturbation

For large but finite λ , the second-order perturbation of Eq. (4) gives rise to an additional anisotropic term:

$$H^{(2)} = -\frac{(J_{\rm F}/6)^2}{3\lambda/2} 4(1+3\epsilon^2) \sum_{\langle\langle \mathbf{m}, \mathbf{m}' \rangle\rangle} \left\{ S_{\mathbf{m}}^x S_{\mathbf{m}'}^x + S_{\mathbf{m}}^y S_{\mathbf{m}'}^y + \gamma_2 S_{\mathbf{m}}^z S_{\mathbf{m}'}^z \right\},\tag{7}$$

where $\langle \langle \mathbf{m}, \mathbf{m}' \rangle \rangle$ means that the nearest-neighbor Cu sites. $\gamma_2 = (1 - \epsilon)^2/(1 + 3\epsilon^2)$. Note that $\gamma_2 < 1$ for $\epsilon > 0$; thus, AF interaction $J_{\rm AF}$ induces an easy xy-plane anisotropy in $H^{(2)}$.

We thus arrive at a minimum effective low-energy spin Hamiltonian, $H_{\text{eff}} = H^{(0)} + H^{(2)}$:

$$H_{\text{eff}} = -J_1 \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} \left\{ S_{\mathbf{m}}^x s_{\mathbf{n}}^x + S_{\mathbf{m}}^y s_{\mathbf{n}}^y + \gamma_1 S_{\mathbf{m}}^z s_{\mathbf{n}}^z \right\} - J_2 \sum_{\langle \langle \mathbf{m}, \mathbf{m}' \rangle \rangle} \left\{ S_{\mathbf{m}}^x S_{\mathbf{m}'}^x + S_{\mathbf{m}}^y S_{\mathbf{m}'}^y + \gamma_2 S_{\mathbf{m}}^z S_{\mathbf{m}'}^z \right\}.$$
(8)

where $J_1 = J_F/3$, $\gamma_1 = 1 + 2\epsilon$, $J_2 = 2(1 + 3\epsilon^2)J_F^2/(27\lambda)$, and $\gamma_2 = (1 - \epsilon)^2/(1 + 3\epsilon^2)$.

III. THE EFFECTS OF IrO₆ OCTAHEDRAL DISTORTION

I further derived H_{eff} in the presence of the level splitting between xy and $\{yz, zx\}$ corresponding to the realistic octahedral distortion. The additional term to Eq. (1) is

$$\sum_{\mathbf{n}\sigma} \Delta d_{\mathbf{n},xy,\sigma}^{\dagger} d_{\mathbf{n},xy,\sigma}.$$

The local energy levels are split into three doublets with energy, orthonormal eigenvectors, and m_i being

$$E_{0} = \frac{\lambda}{4}(-1 + \delta - \sqrt{9 + 2\delta + \delta^{2}}) \begin{cases} |\phi_{1}\rangle = \frac{1}{\sqrt{2 + p^{2}}}(pd_{xy\uparrow} + id_{yz\downarrow} + d_{zx\downarrow}), \ m_{j} = +\frac{1}{2} \\ |\phi_{2}\rangle = \frac{1}{\sqrt{2 + p^{2}}}(pd_{xy\downarrow} + id_{yz\uparrow} - d_{zx\uparrow}), \ m_{j} = -\frac{1}{2} \end{cases}$$

$$E_{1} = \frac{\lambda}{2} \qquad \begin{cases} |\phi_{3}\rangle = \frac{1}{\sqrt{2}}(id_{yz\uparrow} + d_{zx\uparrow}), \ m_{j} = +\frac{3}{2} \\ |\phi_{6}\rangle = \frac{1}{\sqrt{2}}(id_{yz\downarrow} - d_{zx\downarrow}), \ m_{j} = -\frac{3}{2} \end{cases}$$

$$E_{2} = \frac{\lambda}{4}(-1 + \delta + \sqrt{9 + 2\delta + \delta^{2}}) \qquad \begin{cases} |\phi_{4}\rangle = \frac{1}{\sqrt{4 + 2p^{2}}}[2d_{xy\uparrow} - p(id_{yz\uparrow} + d_{zx\downarrow})], \ m_{j} = +\frac{1}{2} \\ |\phi_{5}\rangle = \frac{1}{\sqrt{4 + 2p^{2}}}[2d_{xy\downarrow} - p(id_{yz\uparrow} - d_{zx\uparrow})], \ m_{j} = -\frac{1}{2} \end{cases}$$

$$(9)$$

where $\delta = 2\Delta/\lambda$ and $p = (-1 - \delta + \sqrt{9 + 2\delta + \delta^2})/2$. To reproduce the observed d-d excitation peaks at 0.58 eV and 0.81 eV (Ref. 1), using $E_1 - E_0 = 0.58$ eV and $E_2 - E_0 = 0.81$ eV, one obtains $\lambda = 0.44$ eV and $\Delta = 0.31$ eV (p = 0.65).

In the new basis as ordered in Eq. (9), the Cu-Ir coupling part of Eq. (1) is rewritten as

$$-\frac{J_{\rm F}}{4+2p^2} \sum_{\langle {\bf mn} \rangle} \begin{pmatrix} (p^2+2\epsilon)S_{\bf m}^z & p^2S_{\bf m}^- & -\sqrt{4+2p^2}\epsilon S_{\bf m}^+ & \sqrt{2}|p|(1-\epsilon)S_{\bf m}^z & \sqrt{2}|p|S_{\bf m}^- & 0 \\ p^2S_{\bf m}^+ & -(p^2+2\epsilon)S_{\bf m}^z & 0 & \sqrt{2}|p|S_{\bf m}^+ & -\sqrt{2}|p|(1-\epsilon)S_{\bf m}^z & -\sqrt{4+2p^2}\epsilon S_{\bf m}^- \\ -\sqrt{4+2p^2}\epsilon S_{\bf m}^- & 0 & -(2+p^2)\epsilon S_{\bf m}^z & \sqrt{2+p^2}|p|\epsilon S_{\bf m}^- & 0 & 0 \\ \sqrt{2}|p|(1-\epsilon)S_{\bf m}^z & \sqrt{2}|p|S_{\bf m}^- & \sqrt{2+p^2}|p|\epsilon S_{\bf m}^+ & (2+\epsilon p^2)S_{\bf m}^z & 2S_{\bf m}^- & 0 \\ \sqrt{2}|p|S_{\bf m}^+ & -\sqrt{2}|p|(1-\epsilon)S_{\bf m}^z & 0 & 2S_{\bf m}^+ & -(2+\epsilon p^2)S_{\bf m}^z & \sqrt{2+p^2}|p|\epsilon S_{\bf m}^- \\ 0 & -\sqrt{4+2p^2}\epsilon S_{\bf m}^+ & 0 & 0 & \sqrt{2+p^2}|p|\epsilon S_{\bf m}^+ & (2+p^2)\epsilon S_{\bf m}^z \end{pmatrix}_{\bf n}.$$

Retaining only the lowest-energy doublet, we arrive at a minimum effective low-energy spin Hamiltonian, $H_{\text{eff}} = H^{(0)} + H^{(2)}$:

$$H^{(0)} = -\frac{p^2}{2 + p^2} J_F \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} \left(\vec{S}_{\mathbf{m}} \cdot \vec{s}_{\mathbf{n}} + \frac{2\epsilon}{p^2} S_{\mathbf{m}}^z s_{\mathbf{n}}^z \right), \tag{11}$$

$$H^{(2)} = -\left(\frac{J_{\rm F}}{4+2p^2}\right)^2 \sum_{\langle\langle \mathbf{m}, \mathbf{m}' \rangle\rangle} \left\{ \left(\frac{4(2+p^2)\epsilon^2}{E_1 - E_0} + \frac{4p^2}{E_2 - E_0}\right) \left(S_{\mathbf{m}}^x S_{\mathbf{m}'}^x + S_{\mathbf{m}}^y S_{\mathbf{m}'}^y + \frac{4p^2(1-\epsilon)^2}{E_2 - E_0} S_{\mathbf{m}}^z S_{\mathbf{m}'}^z \right\},$$
(12)

where \vec{s}_{n} is the isospin on the Ir site given by

$$\vec{s}_{\mathbf{n}} = \frac{1}{2} \sum_{i,i' \in \{1,2\}} |\phi_i\rangle \vec{\sigma}_{ii'}\langle \phi_{i'}|. \tag{13}$$

The structure of the effective Hamiltonian [Eq. (8)] remains the same—only the parameters are renormalized. The degree of anisotropy is modified by the splitting. It can be summarized by

$$H_{\text{eff}} = H^{(0)} + H^{(2)},$$

$$H^{(0)} = -J_{1} \sum_{\langle \mathbf{m}, \mathbf{n} \rangle} \left\{ S_{\mathbf{m}}^{x} s_{\mathbf{n}}^{x} + S_{\mathbf{m}}^{y} s_{\mathbf{n}}^{y} + \gamma_{1} S_{\mathbf{m}}^{z} s_{\mathbf{n}}^{z} \right\},$$

$$H^{(2)} = -J_{2} \sum_{\langle \langle \mathbf{m}, \mathbf{m}' \rangle \rangle} \left\{ S_{\mathbf{m}}^{x} S_{\mathbf{m}'}^{x} + S_{\mathbf{m}}^{y} S_{\mathbf{m}'}^{y} + \gamma_{2} S_{\mathbf{m}}^{z} S_{\mathbf{m}'}^{z} \right\},$$
(14)

where

$$J_{1} = J_{F} \frac{p^{2}}{2 + p^{2}} > 0,$$

$$\gamma_{1} = 1 + \frac{2\epsilon}{p^{2}} > 1,$$

$$J_{2} = \left(\frac{J_{F}}{4 + 2p^{2}}\right)^{2} \left(\frac{4(2 + p^{2})\epsilon^{2}}{E_{1} - E_{0}} + \frac{4p^{2}}{E_{2} - E_{0}}\right) > 0,$$

$$\gamma_{2} = \frac{(1 - \epsilon)^{2}}{1 + (1 + \frac{2}{p^{2}})\epsilon^{2} \frac{E_{2} - E_{0}}{E_{1} - E_{0}}} < 1.$$
(15)

Therefore, the reduction of p from unity via positive Δ will enhance the γ_1 anisotropy and reduce the magnon bandwidth.

Note that $\gamma_2 < \frac{(1-\epsilon)^2}{1+(1+\frac{2}{p^2})\epsilon^2} < 1 \text{ for } \epsilon > 0.$

For $\delta \to -\infty$, $p = \infty$ (i.e., the only relevant Ir orbital is d_{xy}), $J_1 = J_{\rm F}$, $\gamma_1 = 1$, $J_2 = 0$, $J_2\gamma_2 = 0$. For $\delta \to +\infty$, p = 0 (i.e., the only relevant Ir orbital are d_{yz} and d_{zx}), $E_0 = -\lambda/2$, $E_1 = \lambda/2$, $E_2 = \infty$, $J_1 = 0$, $J_1\gamma_1 = 2\epsilon J_{\rm F}$, $J_2 = J_{\rm F}^2\epsilon^2/(2\lambda)$, $\gamma_2 = 0$.

IV. SPIN-WAVE SPECTRUM

Using the Holstein-Primakoff transformation with respect to the FM ground state:

$$S_{\mathbf{m}}^{z} = S - a_{\mathbf{m}}^{\dagger} a_{\mathbf{m}}, \ S_{\mathbf{m}}^{+} = \sqrt{2S} a_{\mathbf{m}}^{\dagger}, \ S_{\mathbf{m}}^{-} = \sqrt{2S} a_{\mathbf{m}},$$

$$s_{\mathbf{n}}^{z} = S - b_{\mathbf{n}}^{\dagger} b_{\mathbf{n}}, \ s_{\mathbf{n}}^{+} = \sqrt{2S} b_{\mathbf{n}}^{\dagger}, \ s_{\mathbf{n}}^{-} = \sqrt{2S} b_{\mathbf{n}},$$

$$(16)$$

where S = 1/2, and transforming Eq. (15) to the momentum space, we get

$$H_{\text{eff}} = zS \sum_{q} (a_q^{\dagger}, b_q^{\dagger}) \begin{pmatrix} \gamma_1 J_1 & -J_1 \cos(qa/2) \\ -J_1 \cos(qa/2) & \gamma_1 J_1 + \gamma_2 J_2 - J_2 \cos(qa) \end{pmatrix} \begin{pmatrix} a_q \\ b_q \end{pmatrix}, \tag{17}$$

where a is the nearest Ir-Ir distance, and q is a momentum in the Brillouin zone corresponding to the unit cell with one Cu and one Ir. The spin-wave dispersion is

$$\omega_{\mp}(q) = \frac{1}{2} [2\gamma_1 J_1 + \gamma_2 J_2 - J_2 \cos(qa)] \mp \frac{1}{2} \sqrt{[\gamma_2 J_2 - J_2 \cos(qa)]^2 + 4J_1^2 \cos^2(qa/2)}.$$
 (18)

The second-neighbor interaction opens another gap of size $(1 + \gamma_2)J_2$ at $q = \pi/a$ in the middle of the band. The weight of Ir character in the lower (-) and upper (+) branches of the magnon band is

$$I_{+}(q) = J_{1}^{2} \cos^{2}(qa/2) / \{J_{1}^{2} \cos^{2}(qa/2) + [\gamma_{1} J_{1} - \omega_{+}(q)]^{2} \},$$

$$I_{-}(q) = 1 - I_{+}(q).$$
(19)

Note $I_{-}(q) \equiv I_{+}(q) \equiv 1/2$ for $J_{2} = 0$. But, for $J_{2} > 0$, $I_{\mp}(q)$ dramatically changes; for example, $I_{-}(q) = 1$ and $I_{+}(q) = 0$ at $q = \pi/a$. This is understood as follows: As shown in Eq. (17), the magnons are separated between Ir and Cu sublattices at $q = \pi/a$ with the excitation energy at the Ir site being lower by $J_{2}(1 + \gamma_{2})$. Therefore, $\omega_{-}(q)$ and $\omega_{+}(q)$ have full and zero weight of Ir character at $q = \pi/a$, respectively, which may explain the missing of $\omega_{+}(q)$ near $q = \pi/a$ in the Ir L_{3} edge RIXS. Because of the conservation of the full weight, the weight of Cu character in $\omega_{-}(q)$ and $\omega_{+}(q)$ is $I_{+}(q)$ and $I_{-}(q)$, respectively. Therefore, $\omega_{+}(q)$ has full weight of Cu character at $q = \pi/a$ and should be detectable by Cu L_{3} edge RIXS experiment.

V. HOW TO FIT THEORY WITH EXPERIMENT

There are four parameters in Eq. (15), namely $J_1, \gamma_1, J_2, \gamma_2$. The feature, $I_-(q) = 1$ at $q = \pi/a$, is useful in fitting the theory to the experiment. The observed magnon energy at $q = \pi/a$ is set as the top of $\omega_-(q)$, i.e., $\gamma_1 J_1 = 53.5$ meV, which together with $\lambda = 0.44$ eV and $\Delta = 0.31$ eV obtained from local d - d excitation probes¹ leaves only one parameter (J_1) in Eq. (15) as a free one. We obtain $J_1 = 21$ meV, $\gamma_1 J_1 = 53.5$ meV, $J_2 = 2.4$ meV, $\gamma_2 J_2 = 0.6$ meV satisfying the constraints, Eq. 15. Thus, $\gamma_1 = 2.548$ and $\gamma_2 = 0.25$. Since $J_2/\gamma_1 J_1 = 0.045$, $H^{(2)}$ is negligible for energy consideration, while it dramatically changes the atom-specific spectral weight, as shown in the last section.

VI. MULTI-MAGNON BOUND STATES

The dispersion of n-magnon bound states for the S=1/2 Heisenberg quantum ferromagnet described by $H^{(0)}$ is given by the expression²

$$E_n(k) = \frac{2J_1 \sinh \Phi}{\sinh(n\Phi)} \left(\sinh^2(n\Phi/2) + \sin^2(qa/4) \right)$$
(20)

where $\cosh \Phi = \gamma_1$. For the present case $\gamma_1 = 2.548$ and $\Phi = 1.587$. Fig. 2 displays the dispersion curves for n = 1, 2, 3, 4 for this particular anisotropy. The multi-magnon $(n \ge 2)$ bound states all reside in the middle of the single-magnon (n = 1) band.

Due to strong spin-orbit coupling at Ir sites, lattice irregularities act as an effective magnetic field applying on iridium isospins s_n . Such random magnetic field can lead to decay of high-energy single-magnon excitations into

FIG. 2. Spectra of n-magnon bound states.

multi-magnon excitation states. For multi-magnon bound states, such process becomes possible for

$$E_1(q) > E_n(0) \approx 50 \text{ meV}, \tag{21}$$

In addition, the decay into the two-magnon continuum is possible for

$$E_1(q) > 2E_1(0) \approx 60 \text{ meV}.$$
 (22)

These decay processes are likely additional sources for the missing of the upper branch (between 55 and 75 meV) of the single-magnon excitation in the Ir L_3 edge RIXS data.

^{*} wyin@bnl.gov

X. Liu et al., Phys. Rev. Lett. **109**, 157401 (2012).

Travaux de Michel Gaudin, *Modelès Exactement Résolus* (Les Editions de Physique, Courtabouef and Cambridge, 1995).