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Sr3CuIrO6 has one x2 − y2 hole on a Cu site and one t2g hole on a Ir site. Therefore, we present our work in the
hole language for convenience.

I. LARGE DIRECT EXCHANGE BETWEEN THE IR 5dxy AND CU 3dx2−y2 ORBITALS

A portion of a Cu-Ir chain of Sr3CuIrO6 is shown below in Fig. 1(a). The only magnetic orbital φCu centered on
a Cu2+ ion is of x2 − y2 symmetry and is antisymmetric with regard to the Cu-Ir mirror plane [in Fig. 1(b) this
plane is perpendicular to the paper]. The Ir 5dxy orbital, φIr,xy, is symmetric with regard to the Cu-Ir mirror plane
[Fig. 1(c)], even in the presence of the octahedral tilting and distortion. Thus, φIr,xy is always orthogonal to φCu.
As a result, electron hopping between these two orbitals is prohibited and so is the superexchange process. Thus,
the leading magnetic interaction between them is the direct exchange interaction, JF, which is ferromagnetic. From
the measured magnon bandwidth, we conclude that JF is of order of dozens of meV. This is surprising, since direct
exchange in TMCs is usually very small. The unusually large JF comes from the two-electron exchange integral

JF ∼
∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2,

where r1 and r2 are the positions of the two electrons, and ρ(r) = φCu(r)φIr,xy(r) the overlap density. As illustrated
in Fig. 1(d), ρ(r) has two strongly positive (negative) lobes around the O2 (O5) oxygen atom that bridges the Cu and
Ir sites. This is because the tails of φIr,xy and φCu share the same O2 py and O5 px orbital characters, and thus well
overlap around each of O2 and O5 but with opposite sign. The denominator |r1 − r2| in the above equation means
that the contribution to JF when r1 and r2 are simultaneously near one of O2 and O5 is much larger than that when
they are separately around O2 and O5. Then, since ρ(r) is to be squared in the above equation, the contributions
from the two strong lobes of ρ(r) become of the same sign, yielding a large JF. (Meanwhile the electron hopping is
zero because of the phase cancelation.)

FIG. 1. (a) Cu-Ir chain of Sr3CuIrO6 where Cu2+ and Ir4+ are coordinated by an oxygen plaquette and octahedron, respectively.
The IrO6 octahedral tilting is denoted by α ' 150◦ and the octahedral distortion by β ' 82◦. (b) and (c) Schematic drawings
of Cu 3dx2−y2 and Ir 5dxy Wannier orbitals, φCu and φIr,xy, respectively, for the ideal case of α = 180◦ and β = 90◦. Note
the considerable tails on the oxygen sites due to the metal-oxygen hybridization. (d) Schematic map of the overlap density,
ρ = φCuφIr,xy. Red (blue) represents positive (negative) values.
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II. IN THE ABSENCE OF IrO6 OCTAHEDRAL DISTORTION

We consider a one-dimensional (1D) model with orbital-dependent Heisenberg exchange interactions (JF, JAF)
between the Cu and Ir sites and with large spin-orbit interaction λ on the Ir sites:

H =
∑
〈m,n〉

{
− JF

~Sm,x2−y2 · ~Sn,xy + JAF
~Sm,x2−y2 · (~Sn,yz + ~Sn,zx)

}
+ λ

∑
n

~Ln · ~Sn, (1)

where m denotes a Cu site, n an Ir site, and 〈m,n〉 means nearest neighbors. ~Sn,γ =
∑
µν d

†
n,γ,µ~σµνdn,γ,ν/2 where ~σµν

is the Pauli matrix and dn,γ,µ is the annihilation operator of an electron with spin µ =↑, ↓ and orbital γ = xy, xz, yz
on the Ir site n. −JF < 0 is the oxygen-bridged ferromagnetic (FM) exchange coupling due to the orthogonality of
the Cu x2− y2 orbital to the Ir xy orbital. JAF > 0 is oxygen-bridged antiferromagnetic (AF) exchange coupling due
to the IrO6-octahedral-tilting-induced nonorthogonality of the Cu x2 − y2 orbital to the Ir yz and zx orbitals.

The spin-orbit interaction on the t2g orbitals of the Ir atom may be expressed in the t2g basis of
{dxy↑, dyz↑, dzx↑, dxy↓, dyz↓, dzx↓} as

λ~Ln · ~Sn =
λ

2


0 0 0 0 i −1
0 0 i −i 0 0
0 −i 0 1 0 0
0 i 1 0 0 0
−i 0 0 0 0 −i
−1 0 0 0 i 0


n

. (2)

The local energy levels are split into −λ for a doublet (total angular momentum j = 1
2 ) and λ/2 for a quadruplet

(j = 3
2 ). The orthonormal eigenvectors |j,m〉 are

|j =
1

2
,m = +

1

2
〉 =

1√
3

(dxy↑ + idyz↓ + dzx↓),

|j =
1

2
,m = −1

2
〉 =

1√
3

(dxy↓ + idyz↑ − dzx↑),

|j =
3

2
,m = +

3

2
〉 =

1√
2

(idyz↑ + dzx↑),

|j =
3

2
,m = +

1

2
〉 =

1√
6

(2dxy↑ − idyz↓ − dzx↓),

|j =
3

2
,m = −1

2
〉 =

1√
6

(2dxy↓ − idyz↑ + dzx↑),

|j =
3

2
,m = −3

2
〉 =

1√
2

(idyz↓ − dzx↓). (3)

In the new |j,m〉 basis as ordered in Eq. (3), the Cu-Ir coupling part of Eq. (1) is rewritten as

−JF

6

∑
〈m,n〉



(1 + 2ε)Szm S−m −
√

6εS+
m

√
2(1− ε)Szm

√
2S−m 0

S+
m −(1 + 2ε)Szm 0

√
2S+

m −
√

2(1− ε)Szm −
√

6εS−m
−
√

6εS−m 0 −3εSzm
√

3εS−m 0 0√
2(1− ε)Szm

√
2S−m

√
3εS+

m (2 + ε)Szm 2S−m 0√
2S+

m −
√

2(1− ε)Szm 0 2S+
m −(2 + ε)Szm

√
3εS−m

0 −
√

6εS+
m 0 0

√
3εS+

m 3εSzm


n

, (4)

for the Cu atom on site m and the Ir atom on site n where ε = JAF/JF > 0. ~Sm is a shorthand notation of ~Sm,x2−y2 .

A. The zeroth order

In the large λ limit, the Kramers doublet (j = 1/2) constitute the low-energy sector of Eq. (1) on the Ir sites. For
infinite λ, one may retain only the Kramers doublet subspace of Eq. (4), i.e., the zeroth-order approximation:

H(0) = −JF

3

∑
〈m,n〉

Sxms
x
n + Syms

y
n + (1 + 2ε)Szms

z
n, (5)
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where ~sn is the isospin (j = 1/2) on the Ir site given by

~sn =
1

2

∑
mm′

|j =
1

2
,m〉~σmm′〈j =

1

2
,m′|. (6)

Since ε = JAF/JF > 0, H(0) possesses an easy z-axis anisotropy. The magnon dispersion would be ω(k) = 1
3JF(1 +

2ε− cos k) with the gap of 2εJF/3 = 2JAF/3.

B. The second-order perturbation

For large but finite λ, the second-order perturbation of Eq. (4) gives rise to an additional anisotropic term:

H(2) = − (JF/6)2

3λ/2
4(1 + 3ε2)

∑
〈〈m,m′〉〉

{
SxmS

x
m′ + SymS

y
m′ + γ2S

z
mS

z
m′

}
, (7)

where 〈〈m,m′〉〉 means that the nearest-neighbor Cu sites. γ2 = (1− ε)2/(1 + 3ε2). Note that γ2 < 1 for ε > 0; thus,
AF interaction JAF induces an easy xy-plane anisotropy in H(2).

We thus arrive at a minimum effective low-energy spin Hamiltonian, Heff = H(0) +H(2):

Heff = −J1

∑
〈m,n〉

{
Sxms

x
n + Syms

y
n + γ1S

z
ms

z
n

}
− J2

∑
〈〈m,m′〉〉

{
SxmS

x
m′ + SymS

y
m′ + γ2S

z
mS

z
m′

}
. (8)

where J1 = JF/3, γ1 = 1 + 2ε, J2 = 2(1 + 3ε2)J2
F/(27λ), and γ2 = (1− ε)2/(1 + 3ε2).

III. THE EFFECTS OF IrO6 OCTAHEDRAL DISTORTION

I further derived Heff in the presence of the level splitting between xy and {yz, zx} corresponding to the realistic
octahedral distortion. The additional term to Eq. (1) is∑

nσ

∆d†n,xy,σdn,xy,σ.

The local energy levels are split into three doublets with energy, orthonormal eigenvectors, and mj being

E0 = λ
4 (−1 + δ −

√
9 + 2δ + δ2)

{ |φ1〉 = 1√
2+p2

(pdxy↑ + idyz↓ + dzx↓), mj = + 1
2

|φ2〉 = 1√
2+p2

(pdxy↓ + idyz↑ − dzx↑), mj = − 1
2

E1 = λ
2

{ |φ3〉 = 1√
2
(idyz↑ + dzx↑), mj = + 3

2

|φ6〉 = 1√
2
(idyz↓ − dzx↓), mj = − 3

2

E2 = λ
4 (−1 + δ +

√
9 + 2δ + δ2)

{ |φ4〉 = 1√
4+2p2

[2dxy↑ − p(idyz↓ + dzx↓)], mj = + 1
2

|φ5〉 = 1√
4+2p2

[2dxy↓ − p(idyz↑ − dzx↑)], mj = − 1
2

(9)

where δ = 2∆/λ and p = (−1 − δ +
√

9 + 2δ + δ2)/2. To reproduce the observed d-d excitation peaks at 0.58 eV
and 0.81 eV (Ref. 1), using E1 − E0 = 0.58 eV and E2 − E0 = 0.81 eV, one obtains λ = 0.44 eV and ∆ = 0.31 eV
(p = 0.65).

In the new basis as ordered in Eq. (9), the Cu-Ir coupling part of Eq. (1) is rewritten as

− JF

4 + 2p2

∑
〈mn〉



(p2 + 2ε)Szm p2S−m −
√

4 + 2p2εS+
m

√
2|p|(1− ε)Szm

√
2|p|S−m 0

p2S+
m −(p2 + 2ε)Szm 0

√
2|p|S+

m −
√

2|p|(1− ε)Szm −
√

4 + 2p2εS−m
−
√

4 + 2p2εS−m 0 −(2 + p2)εSzm
√

2 + p2|p|εS−m 0 0√
2|p|(1− ε)Szm

√
2|p|S−m

√
2 + p2|p|εS+

m (2 + εp2)Szm 2S−m 0√
2|p|S+

m −
√

2|p|(1− ε)Szm 0 2S+
m −(2 + εp2)Szm

√
2 + p2|p|εS−m

0 −
√

4 + 2p2εS+
m 0 0

√
2 + p2|p|εS+

m (2 + p2)εSzm


n

.

(10)
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Retaining only the lowest-energy doublet, we arrive at a minimum effective low-energy spin Hamiltonian, Heff =
H(0) +H(2):

H(0) = − p2

2 + p2
JF

∑
〈m,n〉

(
~Sm · ~sn +

2ε

p2
Szms

z
n

)
, (11)

H(2) = −
(

JF

4 + 2p2

)2 ∑
〈〈m,m′〉〉

{(4(2 + p2)ε2

E1 − E0
+

4p2

E2 − E0

)
(SxmS

x
m′ + SymS

y
m′) +

4p2(1− ε)2

E2 − E0
SzmS

z
m′

}
, (12)

where ~sn is the isospin on the Ir site given by

~sn =
1

2

∑
i,i′∈{1,2}

|φi〉~σii′〈φi′ |. (13)

The structure of the effective Hamiltonian [Eq. (8)] remains the same—only the parameters are renormalized. The
degree of anisotropy is modified by the splitting. It can be summarized by

Heff = H(0) +H(2),

H(0) = −J1

∑
〈m,n〉

{
Sxms

x
n + Syms

y
n + γ1S

z
ms

z
n

}
, (14)

H(2) = −J2

∑
〈〈m,m′〉〉

{
SxmS

x
m′ + SymS

y
m′ + γ2S

z
mS

z
m′

}
,

where

J1 = JF
p2

2 + p2
> 0,

γ1 = 1 +
2ε

p2
> 1,

J2 =

(
JF

4 + 2p2

)2 (4(2 + p2)ε2

E1 − E0
+

4p2

E2 − E0

)
> 0,

γ2 =
(1− ε)2

1 + (1 + 2
p2 )ε2E2−E0

E1−E0

< 1. (15)

Therefore, the reduction of p from unity via positive ∆ will enhance the γ1 anisotropy and reduce the magnon
bandwidth.

Note that γ2 <
(1−ε)2

1+(1+ 2
p2

)ε2
< 1 for ε > 0.

For δ → −∞, p =∞ (i.e., the only relevant Ir orbital is dxy), J1 = JF, γ1 = 1, J2 = 0, J2γ2 = 0.
For δ → +∞, p = 0 (i.e., the only relevant Ir orbital are dyz and dzx), E0 = −λ/2, E1 = λ/2, E2 = ∞, J1 = 0,

J1γ1 = 2εJF, J2 = J2
Fε

2/(2λ), γ2 = 0.

IV. SPIN-WAVE SPECTRUM

Using the Holstein-Primakoff transformation with respect to the FM ground state:

Szm = S − a†mam, S+
m =

√
2Sa†m, S

−
m =

√
2Sam,

szn = S − b†nbn, s+
n =
√

2Sb†n, s
−
n =

√
2Sbn, (16)

where S = 1/2, and transforming Eq. (15) to the momentum space, we get

Heff = zS
∑
q

(a†q, b
†
q)

(
γ1J1 −J1 cos(qa/2)

−J1 cos(qa/2) γ1J1 + γ2J2 − J2 cos(qa)

)(
aq
bq

)
, (17)

where a is the nearest Ir-Ir distance, and q is a momentum in the Brillouin zone corresponding to the unit cell with
one Cu and one Ir. The spin-wave dispersion is

ω∓(q) =
1

2
[2γ1J1 + γ2J2 − J2 cos(qa)]∓ 1

2

√
[γ2J2 − J2 cos(qa)]2 + 4J2

1 cos2(qa/2). (18)
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The second-neighbor interaction opens another gap of size (1 + γ2)J2 at q = π/a in the middle of the band.
The weight of Ir character in the lower (-) and upper (+) branches of the magnon band is

I+(q) = J2
1 cos2(qa/2)/{J2

1 cos2(qa/2) + [γ1J1 − ω+(q)]2},
I−(q) = 1− I+(q). (19)

Note I−(q) ≡ I+(q) ≡ 1/2 for J2 = 0. But, for J2 > 0, I∓(q) dramatically changes; for example, I−(q) = 1 and
I+(q) = 0 at q = π/a. This is understood as follows: As shown in Eq. (17), the magnons are separated between Ir
and Cu sublattices at q = π/a with the excitation energy at the Ir site being lower by J2(1 + γ2). Therefore, ω−(q)
and ω+(q) have full and zero weight of Ir character at q = π/a, respectively, which may explain the missing of ω+(q)
near q = π/a in the Ir L3 edge RIXS. Because of the conservation of the full weight, the weight of Cu character in
ω−(q) and ω+(q) is I+(q) and I−(q), respectively. Therefore, ω+(q) has full weight of Cu character at q = π/a and
should be detectable by Cu L3 edge RIXS experiment.

V. HOW TO FIT THEORY WITH EXPERIMENT

There are four parameters in Eq. (15), namely J1, γ1, J2, γ2. The feature, I−(q) = 1 at q = π/a, is useful in fitting
the theory to the experiment. The observed magnon energy at q = π/a is set as the top of ω−(q), i.e., γ1J1 = 53.5
meV, which together with λ = 0.44 eV and ∆ = 0.31 eV obtained from local d− d excitation probes1 leaves only one
parameter (J1) in Eq. (15) as a free one. We obtain J1 = 21 meV, γ1J1 = 53.5 meV, J2 = 2.4 meV, γ2J2 = 0.6
meV satisfying the constraints, Eq. 15. Thus, γ1 = 2.548 and γ2 = 0.25. Since J2/γ1J1 = 0.045, H(2) is negligible for
energy consideration, while it dramatically changes the atom-specific spectral weight, as shown in the last section.

VI. MULTI-MAGNON BOUND STATES

The dispersion of n-magnon bound states for the S = 1/2 Heisenberg quantum ferromagnet described by H(0) is
given by the expression2

En(k) =
2J1 sinh Φ

sinh(nΦ)

(
sinh2(nΦ/2) + sin2(qa/4)

)
(20)

where cosh Φ = γ1. For the present case γ1 = 2.548 and Φ = 1.587. Fig. 2 displays the dispersion curves for
n = 1, 2, 3, 4 for this particular anisotropy. The multi-magnon (n ≥ 2) bound states all reside in the middle of the
single-magnon (n = 1) band.

Due to strong spin-orbit coupling at Ir sites, lattice irregularities act as an effective magnetic field applying on
iridium isospins sn. Such random magnetic field can lead to decay of high-energy single-magnon excitations into

FIG. 2. Spectra of n-magnon bound states.
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multi-magnon excitation states. For multi-magnon bound states, such process becomes possible for

E1(q) > En(0) ≈ 50 meV, (21)

In addition, the decay into the two-magnon continuum is possible for

E1(q) > 2E1(0) ≈ 60 meV. (22)

These decay processes are likely additional sources for the missing of the upper branch (between 55 and 75 meV) of
the single-magnon excitation in the Ir L3 edge RIXS data.
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