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The electronic states of many Mott insulators, including iridates, are often conceptualized in terms of

localized atomic states such as the famous “J. = 1/2 state.” Although orbital hybridization can strongly
modify such states and dramatically change the electronic properties of materials, probing this process is
highly challenging. In this Letter, we directly detect and quantify the formation of dimer orbitals in an
iridate material BasAllr,O;; using resonant inelastic x-ray scattering. Sharp peaks corresponding to the
excitations of dimer orbitals are observed and analyzed by a combination of density functional theory

calculations and theoretical simulations based on an Ir-Ir cluster model. Such partially delocalized dimer
states lead to a redefinition of the angular momentum of the electrons and changes in the magnetic and
electronic behaviors of the material. We use this to explain the reduction of the observed magnetic moment

with respect to predictions based on atomic states. This study opens new directions to study dimerization in
a large family of materials, including solids, heterostructures, molecules, and transient states.
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Many of the most interesting phases in correlated quantum
materials occur in systems with strong Coulomb repulsion U,
which tends to drive electron localization via the Mott
insulating mechanism [1]. Because of this, we often con-
ceptualize the electronic and magnetic properties of these
systems in terms of localized states [2], even though many of
the most interesting cases occur when there is strong
competition between U and electron hopping ¢. Of particular
interest in this regard is the localized J.; = 1/2 state [3],
which is the conceptual building block for a host of
fascinating proposed and observed states, including frus-
trated magnets [4—10], topological insulators [11,12], and
possibly even unconventional superconductors [13].
Hopping between IrOg octahedra delocalizes the electrons
and is expected to be relevant in many classes of iridate (or
other heavy d-electron materials) with edge- or face-sharing
octahedra [14—19]. This can heavily modify, or even destroy,
the J s = 1/2 state, motivating arguments about how best to
conceptualize the electronic state of iridates [14,20,21].
Directly probing these states is therefore highly desirable.
In the simplest case of dimerization between neighboring
pairs of IrOg4 octahedra, one expects the formation of
quasilocalized dimer orbitals, which are difficult to probe
by photoemission due to the absence of dispersive bands and
hard to probe optically as dipole optical selection rules means
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that transitions within a orbital manifold are nominally
forbidden. Resonant inelastic x-ray scattering (RIXS), on
the other hand, has been shown as a particularly incisive
probe of on-site localized transitions in the iridates, but, as far
as we are aware, has never definitively isolated an excitation
associated with dimerization [22,23].

In this Letter, we establish that RIXS can directly
measure peaks associated with orbital dimerization and
that a quantitative description of the dimer electronic
configuration can be extracted using density functional
theory (DFT) calculations and multiplet modeling. For this
study we employ face-sharing iridiate BasAllr,O;; and
account for how these interactions modify the J.; = 1/2
state expected on the nominally 5d4° atom in this crystal,
reproducing the previously measured reduction in the
magnetic moment [24]. We argue that, given the proven
ability of RIXS to measure molecules, oxide heterostruc-
tures, and even ultrafast transient states, this has great
potential to probe orbital dimerization under many different
circumstances [25-31].

Single crystal samples of BasAllr,O;; were synthesized
using the self-flux method as described in Refs. [24,32].
Previous diffraction and transport measurements confirm
high sample quality [24]. BasAllr,O;; forms an ortho-
rhombic unit cell with space group Pnma (No. 62) with
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FIG. 1. (a) Crystal structure of BasAllr,O;. The two inequi-
valent IrOg octahedra are labeled Irl and Ir2 and colored in dark
yellow. Quasi-one-dimensional Ir chain structures occur via the
connection of these octahedra through AlO, tetrahedra along the
b axis. (b) Illustration of the local Cartesian coordinates used in
the definition of #,, orbitals. The orientation of the local
coordinates is chosen such that the x, y, z axes are all at an
equal angle [arccos(1/+/3) rad] with respect to the Ir1—Ir2 bond
and the z axis lies in the Ir1-O1-Ir2 plane. The x, y, z axes lie
approximately along the Ir—O bonds in this setting. (c¢) RIXS
map showing the intra-t,, and #,;, — e, excitations.

a=1876,b=5.755,and c = 11.06 A [24]. As shown in
Fig. 1(a), two face-sharing IrOg octahedra form isolated
dimers, which are then connected by AlO, tetrahedra.
These two inequivalently coordinated face-sharing Ir octa-
hedra in a dimer are labeled as Irl and Ir2, as shown in
Figs. 1(a) and 1(b). RIXS experiments were performed at
the Ir-L; edge by using the MERIX instrument at sector 27
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FIG. 2.

of the Advanced Photon Source [33]. A 2 m Si (884) diced
analyzer was used to energy resolve the scattered x rays.
Different incident beam monochromation setups were tested
before settling with a combined ~80 meV total resolution
(full width at half maximum). Data were collected with a
horizontal scattering geometry with the incident x-ray
polarization parallel to the scattering plane (z channel).
The sample was mounted such that the [010] Ir chain
direction and the [101] sample surface normal are in the
scattering plane. Data were collected using an incident x-ray
angle a close to 26° and a detector angle 26 close to 90° unless
otherwise specified.

We initially surveyed incident-energy-dependent RIXS at
room temperature as shown in Fig. 1(c). The low-energy
excitations below 1.2 eV resonate at 11.215 keV and can be
assigned to intra-1,, transitions by comparison to previous
work; f,, — e, transitions occur around 3.6 €V and resonate
at higher incident energies [22,34,35]. A more detailed
incident energy dependence was mapped at 40 K with
80 meV energy resolution [36], focusing on the low-energy
intra-1,, excitations. The spectrum is plotted in Figs. 2(a) and
2(b), where five distinct peaks can be clearly identified. They
are labeled A—F with energies 0.18, 0.32, 0.565, 0.74, and
1.13 eV, respectively. These features show no appreciable
dispersive behavior in their peak energies [see Fig. 2(c)] at
various momentum transfer Q over almost one Brillouin zone
in the chain direction, suggesting that the excitations are
confined within a dimer and that coupling through the AlO,
tetrahedra can be neglected on these energy scales. We note
that pure spin flip excitations are not observed here, almost
certainly because they occur on a too low energy scale.

We use a two-site cluster model for Irl and Ir2 [see
Fig. 1(b)] to simulate the measured RIXS spectrum. The 7,
orbitals of Irl and Ir2 are defined with respect to the local
Cartesian coordinates shown in Fig. 1(b). The EDRIXS [37]
toolkit developed in the COMSCOPE project [38,39] is used
to diagonalize the Hamiltonian and simulate the RIXS

Intensity (a.u.)

06 038 1.0 1.2
Energy loss (eV)

0 00 02

0.4

(a) High-resolution RIXS map at 40 K. (b) The excitation spectrum integrated over £2 eV with respect to the resonant energy

of 11.215 keV. (c) Orbital excitations of BasAllr,O;; show no significant Q dependence indicative of localized states.
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(a) Nlustration of the splitting of the trivial DPS after turning on hopping ¢. The letter S is used to label these DPSs and the

numbers in parentheses are their degeneracy. (b) The solid lines are the energy spectrum of the Ir-Ir cluster model as a function of
hopping ¢ at Ay = 0.1 eV, § = 0.03 eV, and the color map indicates the corresponding simulated RIXS intensity. The vertical dotted
line indicates t = 0.18 eV. (c) The simulated RIXS spectrum at several chosen parameters are compared with the experimental result;

0 = 0 for the bottom light blue curve and 6 = 0.03 for all others.

spectrum, with the real experimental geometry and polari-
zation applied. The energy resolution is set to be 80 meV full
width at half maximum. More details of the RIXS simulation
can be found in the Supplemental Material [40].

To understand the electronic structure that gives rise to
the observed excitations, we start with the nonphysical
condition where the Irl-Ir2 hopping and the noncubic
crystal field (CF) are set to zero. With the octahedra
decoupled, the electronic structure is determined by the
spin-orbit coupling (SOC) 4, the on-site Coulomb U, and
Hund’s Jy interactions. We use a f,, Kanamori-type
Hamiltonian to treat U and Jy, which can be written as

Hy = U fgpigy + U ity + U i,
a a#f a<p.c
—Ip Yy diydgydi dgy + Ty Y dndl dgidgy. (1)
a#tp a#p

where a(f) = d..d,,, d,,isthe t,, orbitalindex.c = 1, | is
the spin index. U' = U —2Jy and U" =U -3Jy. U is
chosen to be 2 eV through all the calculations [46]. With
hopping forbidden, the electrons are localized to form |d*) on
Irl and |d°) on Ir2, with atomic states |d*, Jo = 0,1,2,2')
and |d°, J = 1/2,3/2), respectively. States J.; = 2 and
Jeir = 2/ both have total angular momentum 2, but are of
different energies. Excitations can happen within each
atomic state set, and their energies are determined by
Hund’s coupling and SOC. With Jg; =0.3eV and
A =0.345 eV, which are consistent with earlier work
[47-49], the simulated RIXS spectrum is shown as the light
blue curve in Fig. 3(c), where three peaks are found. The peak
near B comes from the excitations from |d*, J.; = 0) to
|d*, J ¢ = 1) states. The peak near C contains two excita-
tions with very close energies, one is from |d°, Jo = 1/2) to
|, J ot = 3/2) states and another is from |d*, Jo = 0) to

|d*, J ¢ = 2) states. Peak E is determined by the excitations
from |d*, J. = 0) to |d*, Jo = 2). Obviously, our exper-
imental observations have far richer features than this
simulated RIXS spectrum at the isolated atom level. The
activation of the intersite hopping will strongly mix the
|d*; &) and |d°; d*) configurations, which will not only tune
the energy of the excitations but also create new delocalized
states and excitation channels. Here, we use |d"';d") to
represent a direct product state (DPS) of the dimer, where Ir1
has n; electrons and Ir2 has n, electrons.

To estimate the hopping and the noncubic crystal field,
we performed a first-principles DFT calculation using
Vienna ab initio Simulation Package (VAspP) [41-43,50]
and fit a 7,, tight-binding Hamiltonian to the result using
the maximally localized Wannier functions method [51,52].
We set A = U = Jy = 0, as they are included explicitly in
our model later. For simplicity, we assume a trigonal local
CF for the IrOg octahedra in BasAllr,O,;. Under this
approximation, the Hamiltonian V'? for the hopping
between Irl and Ir2 takes a simple form in the 7,, basis,

dexz deYz X2¥2
zz‘x‘ -t -t
A AR /
V= r =t =t 4LHec, (2
i -t —t 7

where ¢ and ¢ are the hopping parameters. Our DFT
calculation gives 7 = 0.18 eV, and ¢ ~ 0.2z. The on-site
trigonal CF Hamiltonian is

M1y —6 -6

Ar1(2

A = =6 mp -6 |, (3)
-6 =0 Hi)
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where p; and p, are the chemical potentials for Irl and Ir2,
respectively. Their difference Ay = p; — u, is about 0.1 eV.
This chemical potential difference distinguishes the two
inequivalent IrOg octahedra [24,53] and induces partial
charge disproportionation in BasAllr,Oy;. § is estimated to
be 0.03 eV from the DFT calculation. The two-site Ir1-Ir2
cluster Hamiltonian is diagonalized in the subspace with
nine electrons in total to get the energy spectrum.

For the isolated Irl and Ir2 condition discussed earlier,
the energy levels (0-1.2 eV) of these DPSs at Ay =0,
0 =0, and ¢ = 0 are shown as the red plateaus and labeled
by S in Fig. 3(a). After turning on the hopping 7, dimer
orbitals will form by superposition of the atomic orbitals of
Irl and Ir2. As a result, the configurations |d*;d°) and
|&°; d*) will mix with each other. With the DFT derived
{t,7,Au, 5}, and the local interaction Jz = 0.3 eV and
A =0.345 eV, the calculated energy levels of these delo-
calized dimer states are shown as blue lines in Fig. 3(a). As
can be seen in Fig. 3(c), the calculated RIXS spectrum with
these parameters agrees quite well with our experimental
observations. Peaks A and D, which were missing in the
localized picture, now appear in the simulated RIXS
spectrum as excitations between delocalized dimerized
states. For example, peak A is from the excitation from
the ground state to the first excited state. The weights of
|d*; &) and |d°; d*) configurations are, respectively, 0.608
and 0.392 in the ground state and 0.560 and 0.440 in the
first excited state.

To further appreciate the competition between the atomic
SOC A, Hund’s coupling Jy, and the delocalization hop-
ping ¢, the evolution of the energy spectrum of these dimer
states as a function of hopping ¢ is presented in Fig. 3(b). In
this calculation, other parameters except hopping ¢ are
fixed. In Fig. 3(b), the solid lines are the relative energies of
the dimer states, and the underlying color map represents
the calculated corresponding RIXS intensities. We can see
that each level S splits into many dimer states and the
energy splitting increases with increasing ¢. In the small ¢
regime, local on-site Jy and 4 dominate the Hamiltonian, so
the mixing mainly occurs within the same level S and the
energy splitting is not far away from the center of each level
S. When increasing ¢, it will compete with Jy and 4 to
induce more mixing between different levels S, which are
reflected as the crossing of energy levels in Fig. 3(b). For
example, the energy of the first excited state split from the
level SO increases at small 7 regime to a maximum and then
decreases at ¢ 2 0.12. Another state split from level S1 is
pushed down to cross with it and has very similar energy.

Besides peaks A—F, the calculated RIXS intensity also
shows some shoulders around the main peaks that are not
resolved in the experimental RIXS spectrum. They might
be washed out by longer range hopping or itineracy not
captured in the cluster model. We also find that the energy
of the dimer states and the RIXS spectrum are not sensitive to
Ap in the region Ay < t [see Fig. 3(c)], because t dominates

the energy spectrum in this region and the energy splitting of
the bonding and antibonding orbitals is as large as 2.5¢. More
details on the competition between Ay and the hopping 7 with
different energy strengths are shown in the Supplemental
Material [40]. At Ay = 0.1 eV and t = 0.18 eV, the calcu-
lated charge disproportionation between Irl and Ir2 is about
0.218 electrons, which is close to 0.3 electrons reported in
previous DFT calculation [53].

Combining RIXS measurements and DFT calculations,
we show that the electronic structure of BasAllr,Oqy
needs to be described by partially delocalized dimer
orbitals, rather than J ¢ = 1/2 atomic states in the strong
SOC limit. It is interesting to notice that dimer orbitals can
still occur in BasAllr,O¢; even if U is large, as due to the
noninteger average Ir valence of 4.5, the Mott mechanism
cannot stop hopping between the Ir sites. The dimerization
process significantly changes the magnetic properties of
BasAllr,O,,. The calculated effective local moment per
dimer is about 1up in BasAllr,Oq;, which is consistent
with the experimental results [24], but is much smaller
than the value 1.732 up expected for two isolated Ir sites: a
Joig = 1/2 on Ir2 and a J ¢ = 0 singlet on Ir1. It indicates
that the symmetry of the magnetic order parameter
has deviated from the ideal spherical symmetry. Indeed,
unlike 3d magnetic Mott insulators, where the order
parameter can be described by pure local physics, it is
common that the order parameter cannot be well described
by a pure local object in many iridates due to the extended
orbitals and much stronger intersite hoppings. For in-
stance, reduced effective local moments have been
observed in many d° iridates, such as Sr,IrO, [54,55],
Sr31Ir,O5 [56], and pyrochlore iridates [57-59]. Another
interesting case is the exotic magnetic moments found in
some d* iridates [60], where the local ground state is a
nonmagnetic singlet. This peculiar behavior is found to be
caused by the virtual intersite exchange process [61], so a
local single atomic description is not appropriate here
either. We also emphasize that the cluster model used in
this Letter can be straightforwardly applied to simulate the
RIXS spectrum of the 6H-hexagonal oxides BayAB,Oq
(A=1In,Y,Lu, Naand B = Ru, Ir) [16,62,63] and similar
dimer excitations can be expected in these compounds.
This theoretical method can also be generalized to study
other systems with strong nonlocal electronic itinerancy,
such as the pyrochlore iridates, where possible low-energy
dimer excitations (around 0.1 eV) have been observed in
the RIXS spectrum [64-67].

In summary, we find new peaks corresponding to the
excitations of dimer orbitals in the experimental RIXS
spectrum of BasAllr,O;. The DFT calculations and the
RIXS simulations confirm that the hopping strength
between Irl and Ir2 in BasAllr,Oy; is indeed strong enough
to form dimer orbitals, and their excitations explain
the observed features in the measured RIXS spectrum.
Furthermore, our analysis well explained the observed
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reduction of the magnetic moment. This Letter establishes
RIXS as a spectroscopy tool to probe the formation of
delocalized dimer orbitals and characterize their micro-
scopic properties, which may open new directions to study
delocalization in other dimerized strongly correlated mate-
rials by RIXS with widespread potential applications in
molecules, oxide heterostructures, and even ultrafast tran-
sient states.
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