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Here we present details of the sample synthesis and characterization and further information

about the optical reflectivity measurements.

SAMPLE SYNTHESIS AND CHARACTERIZATION

The Sr2IrO4 thin film sample was produced using pulsed laser deposition [1]. A KrF excimer

laser was used to ablate a stoichiometric Sr2IrO4 target 5.5 cm away from the sample with 1.1 J/cm2

fluence pulses at a 1 Hz repetition frequency. For the growth, the SrTiO3 substrate was held at

850◦C in 1 mTorr of background oxygen pressure. After growth the films were cooled down in 1

atmosphere of oxygen pressure. Figure S1 plots an (0, 0, L) X-ray diffraction measurement of the

film, taken with a laboratory Cu Kα x-ray source. Strong Bragg peaks are visible from the film

and the substrate. Within the precision of the measurement, no impurity phases were detected.

Figure S2 presents X-ray characterization of the film taken at SACLA. Good crystallinity is shown

in the (0, 0, 28) and (−2,−2, 24) structural Bragg peak rocking curves (Fig. S2a,b), with full-width

at half-maximum mosaics of 0.10◦ and 0.18◦ respectively. The energy scan about the Ir L3-edge,

shown in panel (c), shows a strong white line resonance, as seen in previous work [2].

FIG. S1. (0, 0, L) diffraction measurement on the Sr2IrO4 thin film. All peaks can be accounted for without

any impurity phases. Bragg peaks from Sr2IrO4 and SrTiO3 are indexed in blue and red respectively. L in

the x-axis is defined in terms of the Sr2IrO4 lattice with c = 25.83 Å.

The single crystal Sr2IrO4 sample was prepared from SrCO3, IrO2, and SrCl2 starting materials

with a molar ratio of 1.8:1.0:15. SrCl2 acted as a flux. The mixture was melted at 1300◦C and

subsequently cooled down to 900◦C at a rate of 8◦C per hour before being furnace-cooled to room

temperature. The Néel temperature was determined from bulk magnetization in a magnetic field
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FIG. S2. Diffraction measurements of the Sr2IrO4 thin film taken at SACLA showing good quality crys-

tallinity. (a) and (b) plot the (0, 0, 28) and (−2,−2, 24) structural peaks respectively. Horizontal bars show

the full-width at half-maximum of the peaks. (c) X-ray fluorescence measurement as a function of incident

energy through the Ir L3-edge resonance.

of 0.5 T. Further details of the sample characterization are described in Ref. [3].

OPTICAL REFLECTIVITY MEASUREMENTS

The transient changes in the Sr2IrO4 optical reflectivity were measured in a standard optical

pump-probe setup, on the same single crystal that was used in the RIXS measurements. The

2 µm, 100-fs excitation pulses were derived from the idler beam of a single-stage optical parametric

amplifier, pumped by a 1 kHz Ti:sapphire amplifier system that also provides the 800-nm probe

pulses. Excitation fluences in the mJ/cm2 range were achieved by focusing the pump beam to a

spot size of about 300 µm. The sample was held at 110 K base temperature using a continuous

flow cryostat.

Figure 2d in the main text plots the normalized change in optical reflectivity as a function of

pump fluence. The recovery of the normalized change in reflectivity, ∆R(t)/R, can be fit with two

exponential terms as

∆R(t)

R
= −Afast exp(−t/Tfast)−Aslow exp(−t/Tslow) (1)

where Tfast and Tslow are the fast and slow recovery timescales and Afast and Aslow are the respective

amplitudes of these processes. This formula was fit to the recovery data starting 300 fs after the

pump.
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