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SUPPLEMENTARY NOTE 1: Complex-valued CNN architecture 34 

 35 

Layer Output Shape 
CConv2d [64,32,64,64,2] 

CLeakReLU [64,32,64,64,2] 
CConv2d [64,32,64,64,2] 

CLeakReLU [64,32,64,64,2] 
CMaxPool2d [64,32,32,32,2] 

CConv2d [64,64,32,32,2] 
CLeakReLU [64,64,32,32,2] 

CConv2d [64,64,32,32,2] 
CLeakReLU [64,64,32,32,2] 
CMaxPool2d [64,64,16,16,2] 

CConv2d [64,128,16,16,2] 
CLeakReLU [64,128,16,16,2] 

CConv2d [64,128,16,16,2] 
CLeakReLU [64,128,16,16,2] 
CMaxPool2d [64,128,8,8,2] 

CConv2d [64,256,8,8,2] 
CLeakReLU [64,256,8,8,2] 

CConvTrans2d [64,128,16,16,2] 
CConv2d [64,128,16,16,2] 

CLeakReLU [64,128,16,16,2] 
CConv2d [64,128,16,16,2] 

CLeakReLU [64,128,16,16,2] 
CConvTrans2d [64,64,32,32,2] 

CConv2d [64,64,32,32,2] 
CLeakReLU [64,64,32,32,2] 

CConv2d [64,64,32,32,2] 
CLeakReLU [64,64,32,32,2] 

CConvTrans2d [64,32,64,64,2] 
CConv2d [64,1,64,64,2] 

 36 

Supplementary Table 1 Complex-valued CNN architecture. The size of the input is [64,1,64,64,2], where the first 37 
dimension represents the batch size, the second dimension represents the coherent diffraction pattern’s intensity 38 
channel, the third and fourth dimension represent the height and width of the image, and the last dimension represents 39 
the real and imaginary part. We first downsample the input from 64 × 64 to 8 × 8 using the encoder and then up-40 
sample to its original size using the decoder. 41 

 42 
 43 
  44 
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SUPPLEMENTARY NOTE 2: Implementation Details 45 

All machine learning model training experiments are implemented on a single V100 GPU. More 46 

details are reported in Supplementary Table 2.  47 

 Details 
Parameters of cosine annealing scheduler T_max=500, 𝑙𝑙𝑙𝑙_ min = 0.0001 

Weight initialization xavier_uniform (gain=1) 
Values for the ADAM optimizer 𝛽𝛽1 = 0.9 𝛽𝛽2 = 0.999  

Batch size 64 for simulated data and 1 for experimental data  
Activation function of the intermediate 

layer 
Leaky ReLu with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛 = 0.2. 

 
 

CUDA versions and driver 

Python: 3.8.13 
PyTorch: 1.8.0 

Torchvision: 0.9.0 
CUDA: 11.1 

CUDNN: 8005 
Supplementary Table 2. Implementation details for ML model training 48 

SUPPLEMENTARY NOTE 3: Complex-valued Convolution and Activation Function 49 

We first introduce the complex convolutional operation. Let 𝐼𝐼 = 𝐼𝐼r + 𝑗𝑗𝐼𝐼i, as a complex-valued 50 

input, where 𝐼𝐼r and 𝐼𝐼i are the real and imaginary parts of 𝐼𝐼. Given a complex-valued convolutional 51 

filter 𝑘𝑘 = 𝑘𝑘r + 𝑗𝑗𝑘𝑘i, the complex-valued convolutional operation based on a complex-valued input 52 

and a complex-valued filter can be described as follows: 53 

                   𝐼𝐼 ∗ 𝑘𝑘 = (𝐼𝐼r + 𝑗𝑗𝐼𝐼i) ∗ (𝑘𝑘r + 𝑗𝑗𝑘𝑘i) = (𝐼𝐼r ∗ 𝑘𝑘r − 𝐼𝐼i ∗ 𝑘𝑘i) + 𝑗𝑗(𝐼𝐼r ∗ 𝑘𝑘i + 𝐼𝐼i ∗ 𝑘𝑘r).              (1)  54 

Here, we can split a complex-valued convolutional operation into two separate real-valued 55 

convolutions (i.e., 𝑘𝑘r,𝑘𝑘i), and calculate the output based on Eq. 1. Similarly, for complex-valued 56 

transpose convolution operation, we can just replace 𝑘𝑘r  and 𝑘𝑘i as real-valued transpose 57 

convolution operation. Figure 2b in the main text illustrates the complex-valued convolutional 58 

operation. 59 
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In real-valued neural networks, rectified linear unit (ReLU) is the most widely used activation 60 

function. However, for a complex signal, the real or imaginary component could be negative in 61 

some cases. Accordingly, we employ a Leaky ReLU activation function, which has a small slope 62 

for negative values on both real and imaginary parts. The definition of Leaky ReLU and complex 63 

Leaky ReLU are shown as follows: 64 

                            𝐿𝐿𝑛𝑛𝑛𝑛𝑘𝑘𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿(𝑥𝑥) = � 𝑥𝑥, 𝑥𝑥 ≥ 0
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛 × 𝑥𝑥, 𝑠𝑠𝑛𝑛ℎ𝑛𝑛𝑙𝑙𝑒𝑒𝑛𝑛𝑠𝑠𝑛𝑛,                                (2) 65 

                𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛𝑘𝑘𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿(𝑧𝑧) = 𝐿𝐿𝑛𝑛𝑛𝑛𝑘𝑘𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿(𝑧𝑧r) + 𝑗𝑗 ∗ 𝐿𝐿𝑛𝑛𝑛𝑛𝑘𝑘𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿(𝑧𝑧i),                            (3) 66 

where 𝑧𝑧 = 𝑧𝑧r + 𝑗𝑗 ∗ 𝑧𝑧i, and we set 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛 = 0.2. 67 

The definition of complex-valued Max-pooling becomes: 68 

𝐶𝐶𝐶𝐶𝑛𝑛𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙(𝑧𝑧) = 𝐶𝐶𝑛𝑛𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙(𝑧𝑧r) + 𝑗𝑗 ∗ 𝐶𝐶𝑛𝑛𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙(𝑧𝑧i).                                 (4) 69 

SUPPLEMENTARY NOTE 4: Definition of 𝝌𝝌𝟐𝟐 error and SSIM 70 

We calculated the χ2 error for the modulus of the diffraction pattern in reciprocal space defined as: 71 

𝜒𝜒2 =
∑��𝐼𝐼e −�𝐼𝐼m�

2

∑ 𝐼𝐼m
,                                                                 (5) 72 

where 𝐼𝐼e  is the reconstructed X-ray diffraction intensity and 𝐼𝐼m  is the true or experimental 73 

diffraction intensity. 74 

The SSIM index between two image arrays 𝒙𝒙 and  𝒚𝒚 is defined as: 75 

SSIM =
�2μ𝑥𝑥μ𝑦𝑦 + 𝑐𝑐1��2σ𝑥𝑥𝑦𝑦 + 𝑐𝑐2�

�μ𝑥𝑥2 + μ𝑦𝑦2 + 𝑐𝑐1��σ𝑥𝑥2 + σ𝑦𝑦2 + 𝑐𝑐2�
,                                         (6) 76 

where 𝜇𝜇𝒙𝒙 and 𝜇𝜇𝒚𝒚 denote the pixel sample mean of 𝒙𝒙 and 𝒚𝒚, respectively. 𝜎𝜎𝒙𝒙2, 𝜎𝜎𝒚𝒚2, and 𝜎𝜎𝒙𝒙𝒚𝒚 represent 77 

the variance of 𝒙𝒙 and variance of 𝒚𝒚, and covariance of 𝒙𝒙 and 𝒚𝒚, respectively. 𝑐𝑐1 and 𝑐𝑐2 are (𝑘𝑘1𝐿𝐿)2 78 
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and (𝑘𝑘2𝐿𝐿)2, respectively, where 𝐿𝐿 is the dynamic range of pixel values. We used the default values 79 

with 𝑘𝑘1 = 0.01 and 𝑘𝑘2 = 0.03. 80 

 81 

SUPPLEMENTARY NOTE 5: Training process and Quantitative evaluation 82 

Figure 3a and b of the main text demonstrate the prediction amplitude and phase of simulated data. 83 

To further investigate the capability of complex-valued neural networks, we generate two types of 84 

simulated data based on phase-domain structures in real space, with different levels of complexity. 85 

The first has 15 domains with positions on a grid (see Ground truth column in Fig. 3a), and the 86 

second has about 50 domains with random positions (see Ground truth column in Fig. 3b). The 87 

phases of each domain are randomly generated over [-π,π]. The training process is as follows. We 88 

first generate 150,000 simulated data with different domain structures and then split the data into 89 

training, validation, and test sets. We utilize the same hyperparameters (e.g., batch size, epochs, 90 

learning rate, and optimizer) for both R-CNN and C-CNN. The learning curve for C-CNN on the 91 

validation set during the training is shown in Supplementary Figure 2. 92 

Based on Supplementary Table 3, it is clear that C-CNN outperforms R-CNN in both types of 93 

domain architecture. Additionally, we examine the robustness of the C-CNN model by adding 94 

Gaussian white noise to the original diffraction patterns at different levels. Supplementary Fig. 2 95 

shows the phase and amplitude SSIMs for varying noise levels. When predicting phase and 96 

amplitude, the C-CNN is robust to input noise levels of 5dB and 8dB for the two types, respectively. 97 

 98 

 15 grid domains 50 random domains 
C-CNN R-CNN C-CNN R-CNN 

Amp SSIM 0.9954±0.0012 0.9282±0.0026 0.8891±0.0009 0.5130±0.0010 
Phase SSIM 0.9200±0.0024 0.6343±0.0063 0.7075±0.0026 0.5614±0.0021 
χ2 error 0.0677±0.0006 0.2460±0.0066 0.1167±0.0006 0.2802±0.0026 
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Supplementary Table 3 Mean and standard deviation of phase and amplitude SSIM in real space and 𝜒𝜒2 error in 99 
diffraction pattern space on different test set with complex-valued and real-valued neural networks. Larger is better 100 
for the SSIM criterion, and smaller is better for the 𝜒𝜒2 error. The best performance is highlighted. 101 

 102 

 103 

SUPPLEMENTARY NOTE 6: Reproducibility  104 

To quantify reproducibility, we obtained the results in real space on one test sample by training 105 

the model from scratch five times with different seeds. Specifically, we calculated the mean and 106 

standard deviation of pair-wise correlation, and 𝜒𝜒2 errors within 5 trails on one test sample, as 107 

shown in Supplementary Table 4. According to Supplementary Table 2, C-CNN performed an 108 

average correlation of 0.96 on predicted amplitude and 0.002 standard derivations of 𝜒𝜒2 errors 109 

with five trials, indicating high reproducibility. However, there is uncertainty regarding the 110 

predicted phase, because of arbitrary offsets propagating from the training. Nevertheless, the 111 

conclusion in Supplementary Figure 3 can still be trusted because it is based on highlighted 112 

amplitude regions in real space.  113 

 114 
 mean ± std minimum  maximum  

Amplitude  0.961 ± 0.017 0.950 0.971 
Phase 0.884 ± 0.121 0.851 0.949 

𝜒𝜒2 errors 0.036 ± 0.002 0.035 0.038 
 115 
Supplementary Table 4 Mean and standard deviation of real space amplitude/phase pair-wise correlation coefficients, 116 
and 𝜒𝜒2 errors of diffraction pattern on one test sample with 5 trails. 117 
 118 
 119 
 120 
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 121 

Supplementary Fig. 1 The SSIM of a amplitude and b phase in real space on the 15 grid domains simulated data by 122 
adding different levels of noise. 123 

 124 

Supplementary Fig. 2 Total loss, real and imaginary loss on the validation set during the training process. 125 

 126 

a b
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 127 

Supplementary Fig. 3 a Real-valued convolutional layer in R-CNN, where 𝐼𝐼A and 𝐼𝐼P denote input amplitude and 128 
phase, and 𝑂𝑂A and 𝑂𝑂P denote output amplitude and phase, respectively. b Complex-valued Convolutional layer in C-129 
CNN, where 𝐼𝐼r and 𝐼𝐼i denote input real and imaginary, and 𝑂𝑂r and 𝑂𝑂i denote output amplitude and phase, respectively. 130 

 131 
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 132 

Supplementary Fig. 4 The architecture of R-CNN. The R-CNN has one real input (one channel) and two branches 133 
of real outputs (i.e., phase, and amplitude). Since the outputs of the two branches are independent, for these models, 134 
there is no connection between the amplitude and phase channels. 135 

 136 

 137 

 138 

Supplementary Fig. 5 a real experimental diffraction pattern b before refinement c after refinement. The diffraction 139 
pattern from the pre-trained model on simulated dataset before refinement has similar stripes but is still far from the 140 
real diffraction pattern. However, there is considerable improvement with refined model by continuing unsupervised 141 
training on the experimental dataset. 142 

 143 

Low

High

a b c
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 144 

 145 

 146 

Supplementary Fig. 6 Synthetic data samples for pre-trained model on the real XFEL experimental data. a 147 
synthetic phase. b synthetic amplitude. c synthetic diffraction pattern. We chose the Gaussian support as the ellipsoid 148 
shape with semi-major axis 18 pixels and semi-minor axis 4 pixels, and a rotation of 28 degrees. As can be seen, the 149 
synthetic diffractions are similar to the real XFEL experimental data, and we use such synthetic data to train a model 150 
as the initiation and continue training on real XFEL experimental data. 151 

 152 

 153 

 154 

 155 
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 156 

Supplementary Fig. 7 2D correlation coefficient heatmaps of real experimental XFEL data. We calculate 157 
correlation coefficient for these 1002 average images and group them into 20 different clusters. The pre-processing 158 
real XEFL data is obtained by averaging each cluster. We first calculate the correlations between 1002 average images 159 
shown in a, and then utilize the hierarchical clustering method to find hierarchy within the data and order the data in 160 

clusters. In specific, we employ the dissimilarity matrix computed by 𝑑𝑑(𝑥𝑥,𝐿𝐿) = 1 − �ρ𝑥𝑥,𝑦𝑦�. After computing the 161 

dissimilarity matrix, we can group data hierarchically according to their dissimilarity, we visualize it in b and obtain 162 
20 different clusters with threshold equal to 0.7. 163 

 164 

 165 

 166 

 167 
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 168 

Supplementary Fig. 8  Predicted amplitude and phase in real space for three different real experimental XFEL 169 
test data. a the experimental XFEL diffraction pattern samples. The red rectangle highlights the large value regions 170 
of the b predicted amplitude and the corresponding regions of c predicted phase. We observe the movement of large 171 
value regions in the predicted amplitude, but they are not related in the phase, which indicates that movement of the 172 
beam rather than internal sample fluctuations. 173 

 174 

 175 

 176 



13 
 

 177 

Supplementary Fig. 9 Performance of the C-CNN model on different amounts of scattered x-ray photons. a 𝜒𝜒2 178 

errors vs. dose levels on simulated data. b Amplitude and phase perdition of a test simulated sample with different 179 

dose levels.  We represent the  𝜒𝜒2 on the simulated data with different amounts of scattered X-ray photons in a and a 180 

test sample in b. As can be seen, our model achieves comparable results with 105 scattered photons and further 181 

lowering the number of scattered photons will degrade performance considerably. 182 

 183 
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 184 

Supplementary Fig. 10 Histogram of 𝝌𝝌𝟐𝟐 in total 1002 real experimental diffraction patterns.  We tested our 185 
trained model on a total of 1002 pulse-train consensus diffraction patterns of real experimental data. The histogram of 186 

𝜒𝜒2 of the images shows that about 60% samples achieve 𝜒𝜒2 around the 0.1. However, the trained model achieves 187 

about 0.04 𝜒𝜒2 in the average images because the input diffraction patterns are noisy and have some outliers which will 188 
degrade the performance.  189 

 190 


