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Ultrafast Bragg coherent diffraction imaging of epitaxial thin
films using deep complex-valued neural networks
Xi Yu 1✉, Longlong Wu 2✉, Yuewei Lin 1, Jiecheng Diao3, Jialun Liu3, Jörg Hallmann 4, Ulrike Boesenberg4, Wei Lu4,
Johannes Möller 4, Markus Scholz 4, Alexey Zozulya 4, Anders Madsen 4, Tadesse Assefa2,5, Emil S. Bozin 2, Yue Cao6,
Hoydoo You 6, Dina Sheyfer7, Stephan Rosenkranz 6, Samuel D. Marks8, Paul G. Evans 8, David A. Keen9, Xi He2,10, Ivan Božović2,10,
Mark P. M. Dean 2, Shinjae Yoo1 and Ian K. Robinson 2,3✉

Domain wall structures form spontaneously due to epitaxial misfit during thin film growth. Imaging the dynamics of domains and
domain walls at ultrafast timescales can provide fundamental clues to features that impact electrical transport in electronic devices.
Recently, deep learning based methods showed promising phase retrieval (PR) performance, allowing intensity-only measurements
to be transformed into snapshot real space images. While the Fourier imaging model involves complex-valued quantities, most
existing deep learning based methods solve the PR problem with real-valued based models, where the connection between
amplitude and phase is ignored. To this end, we involve complex numbers operation in the neural network to preserve the
amplitude and phase connection. Therefore, we employ the complex-valued neural network for solving the PR problem and
evaluate it on Bragg coherent diffraction data streams collected from an epitaxial La2-xSrxCuO4 (LSCO) thin film using an X-ray Free
Electron Laser (XFEL). Our proposed complex-valued neural network based approach outperforms the traditional real-valued neural
network methods in both supervised and unsupervised learning manner. Phase domains are also observed from the LSCO thin film
at an ultrafast timescale using the complex-valued neural network.
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INTRODUCTION
The structure of structural domains and the domain walls
separating them is fundamental to the electrical transport
properties of thin films1,2. Domain walls scatter the conduction
electrons and contribute to the electrical resistance of a film at low
temperatures where thermal scattering is reduced3. The prototype
high-temperature superconductor material, La2-xSrxCuO4 (LSCO)
has a structural phase transition between a low-temperature
orthorhombic (LTO) phase and a high-temperature tetragonal
(HTT) phase4. At a doping level of x ¼ 0:12, which is close to the
optimal doping for superconductivity, the structural phase
transition lies around TS ¼ 200K. Recently, an unusual transverse
resistance has been discovered in devices created from atomic-
layer epitaxial grown LSCO thin films5. The transverse resistance
has a 2-fold orientation dependence on direction, uncoupled from
the crystallographic directions, in the film despite the nominal
4-fold symmetry of its high-temperature structure. The epitaxial
domains may be responsible for this symmetry breaking. Thus,
imaging the nanoscale domain structure at an ultrafast timescale
relevant for electron scattering using inversion of single-shot
coherent diffraction patterns can provide essential clues on this.
Phase retrieval (PR), a long-standing computational challenge,
allows reconstructing a complex-valued image from the coherent
diffraction pattern in reciprocal space. This is a common problem
encountered in many coherent imaging techniques such as
holography6, coherent diffraction imaging7 and ptychography8. In
the last few decades, many approaches have been developed for

solving the PR problem. The most popular method is based on
alternative projection, initially proposed by Gerchberg and
Saxton9 and extended by Fienup10,11. The alternating projection
algorithm aims to recover the complex-valued image from the
intensity-only measurement at the detector sensor plane. How-
ever, some of the projections involve non-convex sets. Hence, the
algorithm becomes stuck in local minima12. Although other
methods have been developed to overcome these limitations
by using the tools of modern optimization theory, including
semi-definite programming-based (SDP) approaches13–15,
regularization-based methods16,17, global optimization methods18

and Wirtinger flow and its variants19, the computational complex-
ity of these PR algorithms is large, and it is time-consuming to
converge to a solution with high confidence.
Recently, deep learning based methods for the PR problems are

becoming increasingly popular20–22. Once the trained model is
obtained, the real-space complex-valued object can be recovered
from its corresponding coherent X-ray diffraction pattern in
milliseconds because of the no-iterative and end-to-end proper-
ties of deep learning-based methods. Thus, a large body of
literature has leveraged the machine learning model to solve the
PR problem in holographic imaging23, X-ray ptychography24,
lensless computational imaging25, X-ray Free-electron Laser (XFEL)
pulse imaging26, and Bragg coherent diffraction imaging
(BCDI)27–30. Typically, deep learning based methods adopt the
general encoder–decoder architecture, in which they first encode
the input signal (e.g., the measured diffraction pattern) to a
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low-dimensional manifold feature space and then reconstruct the
phase information only or both amplitude and phase information
through one or two separate decoders. The amplitude and phase
(or real and imaginary) information obtained from these coherent
imaging methods has a certain physics relation between them. For
example, the real and imaginary parts of the complex refractive
index of a sample (revealed by a forward coherent diffraction
imaging experiment) are intrinsic properties of its atomic
distribution and are connected by the Kramers–Kronig relation.
However, most previous works utilize real-valued neural networks
for PR problems and consider the amplitude and phase (or real
and imaginary) information of a sample as two independent
outputs, the physical connection between them is weak.
In this work, we have invoked a complex-valued operation in a

convolutional neural network (CNN) to take into account the
connection between phase and amplitude. Specifically, we
employed a complex-valued convolutional neural network
(C-CNN) to recover the complex-valued images from the
corresponding coherent diffraction patterns in reciprocal space.
For experimental coherent diffraction data, we chose to look at an
LSCO sample with x ¼ 0:07 for which the HTT-LTO phase
transition lies around T s ¼ 330K with an XFEL source, because
there might be associated critical fluctuations reported in the
previous work31,32. Therefore, the sample was measured on a
vibration-free Peltier stage as a function of temperature near 330K.
One mechanism for observing these critical fluctuations would be
by snapshot imaging of coherent diffraction patterns on the
ultrafast time scale. We found that the C-CNN significantly

outperforms the traditional real-valued CNN (R-CNN) on the
synthetic data and achieved lower χ2 errors with the experimental
XFEL data. With our developed C-CNN model, complex phase
domains were observed with the coherent x-ray diffraction
patterns on the ultrafast timescale measured from the LSCO
sample. In addition, we also observed the characteristic signature
of fluctuations in the real space recovered amplitude. These
fluctuations, however, may be related to the beam pointing
fluctuations rather than the critical fluctuations of the LSCO
sample. The reconstructed snapshot images of the domains within
the LSCO thin film roughly agree with expectations from the
epitaxial growth conditions, showing as circular patches ~100 nm
in diameter, each showing a different phase from its neighbors.

RESULTS
XFEL experiment
A classical picture of the expected structure of epitaxial thin
films33 is shown in Fig. 1. Islands of the nucleating film material are
locally lattice-matched to the substrate touching at domain walls,
as shown in Fig. 1a, b. The local epitaxial forces cause the film
domains to align with the substrate at their centers and the misfit
builds up toward the domain walls. As a result, each domain of the
thin film has a different registration of its crystal lattice with
respect to the average film lattice. Consequently, the Bragg peak
of the thin film is shifted in-plane from that of the substrate, as is
commonly seen34. Importantly, the peak of the thin film is diffuse,
broadened in-plane to a size mainly determined by the reciprocal
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Fig. 1 Domain structure expected due to misfit between a thin film and its substrate. a Initial stage of growth has islands locally registered
with respect to the LSAO substrate. b In the frame of reference of the LSCO thin film’s crystal lattice, the resulting domains are phase shifted
(indicated by φ) relative to each other. c Laboratory frame views of the side and top of the sample mounted on its wedge. d Corresponding
side and top views of diffraction geometry. The incident (ki) and exit (kf ) wave vectors and the wavevector transfer Q, lie in the horizontal
scattering plane. The detector plane, perpendicular to kf , is also inclined but still cuts across all the diffraction rods from the sample. e, f Two
representative coherent diffraction patterns of the (103) Bragg peak of the sample. The solid ellipse marks the estimate peak width, and the
dished ellipse shows the representative speckle size. All the scale bars are 20 μm�1. g Schematic real-space picture of domains falling within
the beam footprint (large ellipse) in the detector coordinate.
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of the domain size and broadened out-of-plane to a size given by
the reciprocal of the film thickness, as shown in Fig. 1d. There are
wide-ranging models of epitaxial growth of thin films on
crystalline substrates summarized in Thompson’s review article33.
Grain boundaries accommodate any misfit between the film and
the substrate lattice constants as strain within the film. Because
thin films usually have 2D arrays of domains, as we discuss below,
this means that simple 2D coherent X-ray diffraction patterns of
thin-film Bragg peaks contain all the information about the
domain structure, which can therefore be revealed by phase
retrieval.
A thin-film sample of LSCO (x ¼ 0:07) with a thickness of 75 nm

was prepared by atomic-layer epitaxy on a LaSrAlO4 (LSAO)
substrates and was measured at the Materials Imaging and
Dynamics (MID) instrument of the European X-ray Free Electron
Laser facility in Hamburg, Germany35. The incident X-ray beam of
8.8 keV photon energy was delivered from the self-amplified
spontaneous emission (SASE) undulator through a double-crystal
monochromator and compound refractive lens (CRL) focusing
system onto the axis of a horizontal 2-circle diffractometer. The
LSCO sample was pre-aligned to the (103) reflection by means of a
40° wedge shown in Fig. 1c, selected for the relatively large
structure factor of LSCO. This Bragg peak was captured by the
adaptive gain integrating pixel detector (AGIPD) situated 8m
downstream of the sample at a 2θ angle of 29°. The crystal was
then rotated to find the (103) reflections of the thin film in the
bisecting geometry. The nearby (103) reflection of the LSAO
substrate aided in the alignment procedure. Figure 1d shows the
diffraction geometry in the reciprocal space coordinate system of
the LSCO thin film. The diffraction features are enlarged for clarity.
The (103) reflections have been drawn with an elliptical envelope
shape of width given by the reciprocal of the size of one of the
thin-film domains along the in-plane [H, 0, 0] direction; the width
along the out-of-plane [0, 0, L] direction is the reciprocal of the
film thickness. The speckles, have a width along [H, 0, 0] which is
the reciprocal of the beam footprint size on the sample, but the
same length along [0, 0, L] because the beam penetrates the
whole film, and the domains are expected to have the same
thickness as the film. These speckles extend in 3D above and
below the plane shown in Fig. 1d, filling the volume of a prolate
ellipsoid.
The diffraction triangle, defined by Q ¼ kf � ki , is shown in

Fig. 1d. The Ewald sphere, tangential to the tip of the kf vector,
determines which parts of the 3D diffraction pattern are selected
by the geometry. This is shown as an inclined box, representing
the AGIPD plane, lying perpendicular to the kf vector and
tangential to the Ewald sphere. The plane cuts across the speckles
at a compound angle, so they should appear as tilted ellipses on
the detector. The domain counting concept36 applies even in this
tilted geometry. In each direction in the detector, the speckle size
is the reciprocal of the beam size on the sample, while the
dimension of the envelope ellipse containing the speckles is the
reciprocal of the domain size. The ratio of these numbers, the
number of speckles seen on the detector, is equal to the number
of domains illuminated by the beam on the sample.
After adjusting the focus position of the CRL optics, speckles

could be seen in the diffraction on the detector, and these were
seen to vary from shot to shot. Time series data were collected
with the sample at room temperature in a long run of 1002 pulse
trains of 140 pulses at 2.2 MHz repetition rate, repeated every
100ms, employing an X-ray attenuator with 33% transmission was
used to prevent beam induced damage to the sample. Speckles
could be seen in the images summed over the pulse trains and
these had a different distribution from one train to another.
Smaller fluctuations were identified between individual shots
within the same pulse train. We performed a series of data cross-
correlation studies to show that the patterns were repeating over
the entire sequence, and we developed a clustering scheme

(described in the Methods section) to generate 20 consensus
diffraction patterns (see Supplementary Fig. 7 for the cross-
correlation analysis).
Figure 1e, f shows two typical diffraction patterns viewed on the

front face of the detector. Before inverting these diffraction
patterns to images, we can learn a lot from the shape and
distribution of the speckles, in consideration of the phase domain
structures expected. As can be seen in Fig. 1f, the speckles have
elliptical shapes with an elliptical envelope surrounding them. This
is what we expected according to the discussion of the diffraction
geometry above. The streaked, tilted elliptical shape of each
speckle arises from their compound angle to the Ewald sphere, as
seen in Fig. 1d. From the width of the speckles, estimated in Fig. 1f
to be 1.5 pixels of 200 µm, we evaluate the beam size on the
sample to be 3.7 µm. The domain dimensions can be estimated
from the reciprocal of the larger ellipse in Fig. 1f which delineates
the shape of the envelope surrounding the speckles; this
hierarchical structure of the coherent diffraction pattern is
precisely what is expected from ensembles of close-packed
domains interfering with each other36. The major axis length is
elongated by the tilting of the detector plane with respect to the
envelope of the speckles seen in Fig. 1e, f. From the minor axis
dimensions of the envelope ellipse, 46 pixels, we estimate that the
domain size is 122 nm on average.
For inversion of the diffraction patterns to real space images by

our C-CNN method, a set of reference images and diffraction
patterns are needed to train the network. Between the random
selection of domain positions and the choice of random phase
shifts, attributed to the local epitaxial relation with the substrate
(discussed above), there are plenty of degrees of freedom for
generating many training data for the neural network. In the
Synthetic data generation method section, elliptical-shaped
domains are randomly placed within the larger elliptical envelope,
shown in Fig. 1g, representing the beam footprint. The dimensions
and the rotation of the two sets of ellipses are determined as the
inverse of the dimensions of the reciprocal-space ellipses from Fig.
1f estimated to be 74 × 46 and 11 × 1.5 pixels for the large and
small ellipses respectively. This picture is drawn in the real space
coordinates of the Fourier transform of the detector data rather
than the surface plane and is used to define the synthetic data
model used for training. All results in this paper are presented in
this detector coordinate system.

Complex-valued neural network architecture
Figure 2a shows the architecture of the proposed C-CNN model
utilized the classical encoder–decoder architecture37 with skip
connection, composed of 2D convolutional, max-pooling and up-
sampling layers. However, all operations in each layer (i.e., non-
linear activation, convolution, max-pooling, and up-sampling) are
performed based on the corresponding complex-valued opera-
tions, where each layer has two sub-layers separately accounting
for the real and imaginary parts (see Supplementary Notes 1 and 3
for more details). Especially, Fig. 2b further shows the detailed
operation of the complex-valued convolutional operation used in
the C-CNN model, as marked by the yellow color in Fig. 2a. As
presented, for each convolutional layer, the input and output size
are ½Hk;Wk; 2� with two channels (i.e., real and imaginary). These
two channels are connected with each other through the
complex-valued convolutional operation. For instance, the out-
put’s real part contains both information from the input’s real and
imaginary, and the real and imaginary kernels also multiply the
input’s real and imagery simultaneously. When applying the
model to the experimental data, we train the refined model with
the output of the pre-trained complex-valued model as the input,
the model can be further refined by continued training (with a
Fourier transform constraint) in an unsupervised learning manner
on the experimental data. We term it unsupervised learning for
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experimental data, since we do not have any ground truth in the
real space, following similar usage in related works29,30. Continued
training means that the model is first trained on simulated data
with a ground truth, and then uses the pre-trained model’s output
as the initialization for continued training the refined model with
experimental data. Figure 2c demonstrates the detailed pipeline of
the proposed C-CNN model using in this unsupervised learning
framework30. Further details of the unsupervised learning frame-
work with the experimental XFEL data are included in the
“Performance on experimental XFEL data” section.

Performance on synthetic data
To demonstrate the performance and applicability of the
proposed C-CNN model to the PR problem, we first apply the
C-CNN model to the synthetic data in a supervised learning
manner. Paired sets of diffraction patterns and object images are
prepared for training the C-CNN model. In order to utilize the
complex-valued neural network, we first set the phase of coherent
diffraction patterns to π

4 and then use the calculated real and
imaginary part of the obtained diffraction patterns as input for the
model. Errors between the prediction of the C-CNN model and the
corresponding target are quantified using the mean absolute error
(MAE). As shown in Fig. 2a, the sizes of input and output are the
same, which is N ´W ´H ´ 2, where N is batch size, W and H is the
width and height of the input diffraction patterns. In this study, we
set N ¼ 64 and W ¼ H ¼ 64. The objective function is defined as:

L ¼ Lre þ Lim ¼ 1
N

XN
i¼1

ρ̂re � ρrej j þ 1
N

XN
i¼1

ρ̂im � ρimj j; (1)

where ρ̂re and ρ̂im correspond to the predicted real and imaginary
parts of the object in real space, ρre and ρim are the real and

imaginary components of the ground truth in real space,
respectively. Supplementary Note 5 and Supplementary Fig. 2
provide details of the training process and learning curve on
simulated data, showing that the C-CNN converged well at about
500 epochs.
To fairly compare with R-CNN, we select the same number of

layers and the number of filters for each layer for both complex-
valued and real-valued neural networks on synthetic domain-array
structures. To distinguish with the proposed C-CNN and show the
intrinsic difference between real-valued and complex-valued
based neural networks, we provide the whole structure of
R-CNN in Supplementary Fig. 4, and the comparison between
the real-valued and complex-valued based convolutional opera-
tion in Supplementary Fig. 3. As can be seen that while the
volumetric shape of concentrated output looks similar for the real-
valued convolutional operation, the ways by which they are
calculated and interpreted are fundamentally different.
Figure 3a presents the results from a simple domain structure

(15 domains with a regular grid position), and Fig. 3b shows the
results from a more complex domain structure (50 domains with
random overlapping position). When there exists significant phase
wrapping, the R-CNN cannot recover the phase well due to the
smoothing effect of real-valued convolution on the output phase.
However, the jump in phase can be preserved because C-CNN
produces real and imaginary outputs instead of amplitude and
phase. To have a quantitative comparison, Fig. 3c, d presents
the histograms of the structural similarity index measure (SSIM) for
the predicted amplitude and phase as well as the χ2 error on the
calculated diffraction patterns (see Supplementary Note 4 for the
definition of the SSIM and χ2 error). Here, a total of 1000 test
samples on simulated data with different domain structures are
used to evaluate. As presented, the C-CNN outperforms the R-CNN
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in both simple and complex domain structures by achieving lower
χ2 errors between ground truth and reconstructed diffraction
patterns and higher SSIM for the predicted amplitude and phase
with higher certainty. Supplementary Table 4 presents more
numerical results showing that C-CNN consistently outperforms
R-CNN in different domain structures.
We further investigate the robustness of the C-CNN model by

adding Gaussian white noise to the original input diffraction
patterns. The noise level is defined by the signal-to-noise ratio:

SNRdB ¼ 10log10
Is
In

� �
; where Is and In refer to the power of the

coherent diffraction intensity signal and noise, respectively. A
higher SNR value means a lower strength of the noise. Figure 4
presents the predicted amplitude and phase of the real-space
object with different noise levels introduced to the input
diffraction. A sample from the test set is presented in Fig. 4 to
illustrate the robustness of the Gaussian noise in the input. We
find that the predicted phase from the C-CNN is more sensitive to

Fig. 3 Representative results for the C-CNN and R-CNN for simulated test sets with different number of domains and domain structure.
Predicted amplitude and phase in the real space with C-CNN and R-CNN for (a) 15 domains with grid position and (b) 50 domains with
random position. Quantitative comparison on synthetic test set with histograms of SSIM calculated between prediction and the ground truth
of amplitude and phase, and the χ2 errors between the input and reconstructed diffraction patterns with C-CNN and R-CNN for (c) 15 domains
with grid position and (d) 50 domains with random position.
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(i.e., 5 dB) to large noise (i.e., −1 dB). b Corresponding predicted amplitudes and (c) predicted phases.

X. Yu et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2024)    24 



the noise than the predicted amplitude. However, as the noise
level increases, the model still provides excellent predictions. This
indicates that the proposed C-CNN model is robust to a
reasonable level of Gaussian noise. In addition, we plot the
amplitude SSIM vs. SNR and phase SSIM vs. SNR curve in
Supplementary Fig. 1 to clearly show the robustness of the
C-CNN against the Gaussian noise, which illustrating that the
resistance of C-CNN is about 5 dB for amplitude prediction and
8 dB for phase prediction. Finally, the performance of C-CNN on
different amounts of scattered X-ray photons using simulate data
is shown in Supplementary Fig. 9a, b indicating that C-CNN
achieves comparable results with 105 scattered photons and
further lowering the number of scattered photons will degrade
performance considerably.

Performance on experimental XFEL data
In this section, the proposed C-CNN is applied to experimental
XFEL data. The main issue with experimental data is the lack of
ground truth for amplitude and phase in real space. To this end,
we reconstruct the phase of the experimental XFEL data in an
unsupervised learning manner. The unsupervised learning frame-
work is illustrated in Fig. 2c. Specifically, we first estimate the
amplitude and phase of the sample for the experimental XFEL
diffraction data based on the pre-trained C-CNN model using
synthetic data with a texture similar to the experimental data (see
Supplementary Fig. 6 for the generation of the synthetic data).
Then, we train another C-CNN model to refine those estimated
phases and amplitudes with an unsupervised loss function using
the estimated phase and amplitude as a starting point. Given the
training set fIamp

i gi¼1;¼ ;n, where Iamp
i is the amplitude of the input

XFEL diffraction pattern, the unsupervised loss function is defined
using the MAE between the measured diffraction and estimated
diffraction:

L ¼ 1
N

XN
i¼1

jj Fðgθ fφ τ Iamp
i

� �� �� � �Iamp
i

�� ��; (2)

where F �ð Þ refers to the Fourier transform and τ �ð Þ represents the
function to convert the amplitude of the input diffraction pattern
into its real and imaginary parts. fφ denotes the C-CNN model pre-
trained on the synthetic data with supervised loss defined in Eq.
(1), and gθ denotes the refined C-CNN model, which is updated
with Eq. (2). Thus, during the unsupervised training process, we
fixed the pre-trained model fφ and only update the refined model

gθ. Since the corresponding ground truth of the predicted phase
and amplitude of a sample are not involved in the loss function,
the above objective function, Eq. (2) is applicable to the
experimental data directly.
The XFEL diffraction data originally contained 1002 pulse trains,

each train containing 140 pulses. To remove the noise and obtain
high quality diffraction images, we are pre-processing the raw
data and finally obtain 20 images by averaging the high correlated
images (see more details in Pre-processing experimental data
section). We split 15 images for training and 5 images for testing.
Figure 5b demonstrates χ2 errors and the reconstructed

diffraction patterns from two test experimental XFEL coherent
X-ray diffraction samples after refined C-CNN model. Supplemen-
tary Fig. 5 illustrates that the reconstructed diffraction pattern
shows significant improvement after refinement compared to
before refinement, demonstrating its effectiveness. Figure 5c, d
shows the corresponding predicted amplitude and phase in real
space. The images are significantly distorted because they are
presented in the inverse of the detector coordinates without
attempting to transform to the sample coordinate system. Groups
of domains are seen as clusters of bright spots, but each spot has a
separate phase value as expected from Fig. 1b. The pixel size of
the real-space images is 88 nm, so the domains size, estimated by
peak width as marked in Fig. 1f should be 1–2 pixels wide which is
observed in Fig. 5c. Thus, the prediction results in the real space
are reasonable since it satisfies our assumptions and achieves
lower χ2 errors. To further investigate the performance on
different inputs, we present the χ2 errors histogram on the 1002
single-train experimental images in Supplementary Fig. 10. We
find that 60% samples achieve χ2 around the 0.1 which is worse
than average images since single-train images are noisy and have
some outliers which will degrade the performance. Finally, we
quantify the reproducibility of C-CNN by repeating five times with
different seeds for training process and report the mean, standard
deviation, maximum and minimum values of the predicted
amplitude, phase correlation coefficient, and χ2 errors of the
reconstructed diffraction pattern in Supplementary Table 3. The
average correlation and standard deviation of χ2 errors on 5 trials
shows that C-CNN could achieve good reproducibility for both
amplitude prediction and reconstructed diffraction pattern. Model
details are provided in Supplementary Note 6.
Moreover, we find the changes identified between the real-

space images shown in Supplementary Fig. 8, and the red
rectangle in the second column highlights the large value regions

Input pattern Reconstructed pattern Predicted amplitude Predicted phasea b c d

Low HighLow High 0.0 0.5 1.0 π0-π

χ 2=0.035

χ 2=0.046

Fig. 5 Performance of the C-CNN model on the experimental XFEL coherent X-ray diffraction samples. a XFEL diffraction data used as
input. b Calculated diffraction patterns with corresponding (c) Predicted amplitude, (d) Predicted phase in real space. Here, the corresponding
χ2 errors between (a) and (b) are shown in (b).
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of the predicted amplitude, appear to be shifted with respect to
each other suggesting a movement of the beam from image to
image rather than internal sample fluctuations. An XFEL beam
experiences SASE fluctuations38, which can result in changes of
the optical wavefront of the X-ray beam as well as jittering the
source position and beam pointing. The CRL optics used here are
expected to produce an approximately Gaussian-shaped focus
with no significant fringes39, but the wavefront distortions and
jitter in position and pointing are likely to cause beam intensity
modulations and small position changes in the position of the
illuminated spot.

DISCUSSION
In this study, we have developed a Complex-valued CNN for the
phase retrieval problem. The C-CNN is shown to perform much
better than R-CNN on synthetic data, especially under more
complex conditions (i.e., large numbers of domains), and is robust
against Gaussian noise. Furthermore, when we apply the C-CNN
model to the experimental XFEL data invoking the pre-trained
model as initialization, we find good agreement with the
experimental data resulting in small χ2 errors. When applying
the model to other similar experiments, one can use the trained
C-CNN model to the obtained amplitude and phase in the real
space directly. Otherwise, generating the corresponding simulated
data for the experiments might be required. However, the rest of
the training process for the refined C-CNN model is the same. As
the C-CNN model can deal with large amounts of coherent
diffraction patterns simultaneously, it will benefit experiments
where large amounts of data are generated from the same
experiments, for example, XFEL experiments. We expect a further
improvement of the C-CNN model’s performance when a large
and more diverse training dataset with known ground truth is
applied for pretraining the model. It is difficult to compare the
current model with the conventional method since the conven-
tional method does not converge for our LSCO XFEL experimental
data. We believe that the proposed C-CNN model will be critical to
the coherent imaging technique, especially in the case that the
conventional method fails. The demonstrated reconstruction
method is general for all epitaxial thin-film systems and can be
widely applied to coherent diffraction experiments using other
sources (e.g., synchrotron), so long as they are stable over the
exposure time40. In the future, we plan to further improve the
performance of the C-CNN model on experimental XFEL data and
incorporate some physical constraints into the framework.

METHODS
Synthetic data generation
We generate synthetic data with random phase and elliptical
domain size, motivated by the general appearance of Fig. 1f. The
amplitude of domain G m; nð Þ is generated with the following
equation:

G m; nð Þ ¼ e

� m�Nw
2ð Þ ´ sin θþ m�Nw

2ð Þ ´ cos θ½ �2
σ2x

þ� n�Nh
2

� �
´ sin θ� n�Nh

2

� �
´ cos θ

� �2
σ2y ;

(3)

where m 2 0; ::;Nwf g; n 2 0; ::;Nhf g, Nw and Nh represent the
width and height of the domain size, respectively. θ denotes the
rotation angle of domain. σx and σy are the semi-major width and
semi-minor width of ellipse domain. The corresponding phase
φ m; nð Þ is randomly selected within �π to π with a uniform
distribution. Thus, the small complex domain, with a size of
Nw ´Nh, can be represented as G × ejφ. Then we piece such
complex domain together to obtain a large 64´ 64 complex array
with random phase. Finally, the diffraction pattern is obtained by
calculating the Fourier transformation of the simulated complex

data multiplied by a fixed elliptical shape Gaussian support
representing the beam size. In addition, we can generate different
numbers of domains by changing the σx , σy , Nw , and Nh (i.e.,
σx ¼ 3; σy ¼ 6, Nw ¼ 17, and Nh ¼ 13 for about 15 domains
within the support shown in Fig. 3a). For the synthetic data, we fix
θ ¼ 29�: The pre-trained model using for XFEL experimental data
is trained on the synthetic data (σx ¼ 1:5; σy ¼ 3, Nw ¼ 9, Nh ¼ 6)
shown in Supplementary Fig. 6.

Pre-processing experimental data
The original raw XFEL diffraction data contained diffraction
patterns from 1002 pulse trains, each train containing 140 pulses
cropped to size of 128 × 102 pixels on the AGIPD. The raw XFEL
images were noisy with only a few counts per pixel and appeared
to be in a random order. To remove the noise and group the
similar diffraction patterns, we first centered and cropped the raw
images to 90 × 90 and then found the highly correlated patterns
within each train by selecting those with the highest correlation
coefficient and averaging them together to produce one single
image per train. We then repeated the process for these 1002
average patterns and grouped them into highly correlated clusters
for further averaging to obtain 20 final processed images.
Supplementary Fig. 7 shows the correlation coefficient heatmap
with raw XFEL experimental data and we group them in 20
clusters based on the dissimilarity matrix. We further center-
cropped the average images into 64 × 64. We found that the
diffraction patterns within each pulse train were generally better
correlated than between trains.

ML model training
Our complex-valued neural network is trained with the Pytorch
package. For the synthetic dataset, we generated 15,000 samples,
80% for training, 10% for validation, and 10% for testing. For the
experimental diffraction data, we pre-processed the raw data and
obtained a total of 20 images, and randomly split them into 15
diffraction patterns for training and 5 for testing. We optimize the
model by using adaptive moment estimation (ADAM)41. The
learning rate is initialized to 0.001, gradually decreasing by using
the cosine annealing scheduler. The network was initialized with
uniform Xavier42 and trained on a single NVIDIA V100 GPU for 500
epochs. The training took 3 h for the synthetic dataset and 30min
for the experimental data. For the synthetic dataset, we normalize
the input amplitude between 0 and 1, and input phase between
−π and π. For the experimental data, we first convert the input
amplitude into the real/imaginary part by simply using the square
root of input intensity. Then the obtained real and imaginary parts
are normalized between 0 and 1 separately. To make the output
phase between −π and π, we utilize the Leaky ReLU activation
function to obtain the negative value for the real/imaginary parts.
We saved the model at the end of training and selected the hyper-
parameters (i.e., the size of the Gaussian support and learning rate)
on the validation data and showed the results on the test set. More
implementation details are reported in Supplementary Table 2.

DATA AVAILABILITY
The source experimental data that support the finding are available from the
corresponding author upon reasonable request.

CODE AVAILABILITY
The python codes of this study are available in a public GitHub repository at https://
github.com/XFELDataScience/Complex-NNphase.
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